The optical microresonator-based frequency comb (microcomb) provides a versatile platform for nonlinear physics studies and has wide applications ranging from metrology to spectroscopy. The deterministic quantum regime is an unexplored aspect of microcombs, in which unconditional entanglements among hundreds of equidistant frequency modes can serve as critical ingredients to scalable universal quantum computing and quantum networking. Here, we demonstrate a deterministic quantum microcomb in a silica microresonator on a silicon chip. 40 continuous-variable quantum modes, in the form of 20 simultaneously two-mode squeezed comb pairs, are observed within 1 THz optical span at telecommunication wavelengths. A maximum raw squeezing of 1.6 dB is attained. A high-resolution spectroscopy measurement is developed to characterize the frequency equidistance of quantum microcombs. Our demonstration offers the possibility to leverage deterministically generated, frequency multiplexed quantum states and integrated photonics to open up new avenues in fields of spectroscopy, quantum metrology, and scalable, continuous-variable-based quantum information processing.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
00000040000
- More
- Availability
-
13
- Author / Contributor
- Filter by Author / Creator
-
-
Pfister, Olivier (4)
-
Anteneh, Amanuel (1)
-
Bensemhoun, Adrien (1)
-
D'Auria, Virginia (1)
-
Etesse, Jean (1)
-
Gonzalez-Arciniegas, C. (1)
-
Jahanbozorgi, Mandana (1)
-
Jeong, Dongin (1)
-
Labonté, Laurent (1)
-
Lee, Hansuek (1)
-
Martin, Anthony (1)
-
Patera, Giuseppe (1)
-
Sun, Shuman (1)
-
Tanzilli, Sébastien (1)
-
Yang, Zijiao (1)
-
Yi, Xu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Bensemhoun, Adrien ; Gonzalez-Arciniegas, C. ; Pfister, Olivier ; Labonté, Laurent ; Etesse, Jean ; Martin, Anthony ; Tanzilli, Sébastien ; Patera, Giuseppe ; D'Auria, Virginia ( , Physics Letters A)Free, publicly-accessible full text available January 1, 2025
-
Anteneh, Amanuel ; Pfister, Olivier ( , Physical Review A)Free, publicly-accessible full text available December 1, 2024