Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cloud formation in the Pi Convection–Cloud Chamber is achieved via ionization in humid conditions, without the injection of aerosol particles to serve as cloud condensation nuclei (CCN). Abundant ions, turbulence, and supersaturated water vapor combine to produce new particles, which grow to become CCN sized and eventually are activated to form clouds. Coupling between the new particle formation and cloud droplets causes predator-prey type oscillations in aerosol and droplet concentrations under turbulent conditions. Leading terms are identified in the budgets for Aitken and accumulation mode aerosols and for cloud droplets. The cloud coupling is proposed to be a result of cloud-induced runaway CCN production through aerosol scavenging. The experiments suggest potential applications to marine cloud brightening, in which ions rather than sea-salt aerosols are generated.more » « less
-
Abstract The subgrid-scale (SGS) scalar variance represents the “unmixedness” of the unresolved small scales in large-eddy simulations (LES) of turbulent flows. Supersaturation variance can play an important role in the activation, growth, and evaporation of cloud droplets in a turbulent environment, and therefore efforts are being made to include SGS supersaturation fluctuations in microphysics models. We present results from a priori tests of SGS scalar variance models using data collected in turbulent Rayleigh–Bénard convection in the Michigan Tech Pi chamber for Rayleigh numbers Ra ∼ 108–109. Data from an array of 10 thermistors were spatially filtered and used to calculate the true SGS scalar variance, a scale-similarity model, and a gradient model for dimensionless filter widths ofh/Δ = 25, 14.3, and 10 (wherehis the height of the chamber and Δ is the spatial filter width). The gradient model was found to have fairly low correlations (ρ∼ 0.2), with the most probable values departing significantly from the one-to-one line in joint probability density functions (JPDFs). However, the scale-similarity model was found to have good behavior in JPDFs and was highly correlated (ρ∼ 0.8) with the true SGS variance. Results of the a priori tests were robust across the parameter space considered, with little dependence on Ra andh/Δ. The similarity model, which only requires an additional test filtering operation, is therefore a promising approach for modeling the SGS scalar variance in LES of cloud turbulence and other related flows.more » « less
-
Abstract. This study delves into the small-scale temperature structure inside the turbulent convection Π Chamber under three temperature differences (10, 15, and 20 K) at Rayleigh number Ra∼109 and Prandtl number Pr≈0.7. We performed high-frequency measurements (2 kHz) with the UltraFast Thermometer (UFT) at selected points along the vertical axis. The miniaturized design of the sensor with a resistive platinum-coated tungsten wire, 2.5 µm thick and 3 mm long, mounted on a miniature wire probe, allowed for vertically undisturbed temperature profiling through the chamber's depth spanning from 8 cm above the bottom to 5 cm below the top. The collected data, consisting of 19 and 3 min time series, were used to investigate the variability of the temperature field within the chamber, aiming to better address scientific questions related to its primary objective: understanding small-scale aerosol–cloud interactions. The analyses reveal substantial variability in both variance and skewness of temperature distributions near the top and bottom plates and in the bulk (central) region, which were linked to local thermal plume dynamics. We also identified three spectral regimes termed “inertial range” (slopes of ∼-7/5), “transition range” (slopes of ∼-3), and “dissipative range”, characterized by slopes of ∼-7. Furthermore, the analysis showed a power law relationship between the periodicity of large-scale circulation (LSC) and the temperature difference. Notably, the experimental results are in good agreement with direct numerical simulation (DNS) conducted under similar thermodynamic conditions, illustrating a comparative analysis of this nature.more » « lessFree, publicly-accessible full text available June 20, 2026
-
Impacts of aerosol particles on clouds, precipitation, and climate remain one of the significant uncertainties in climate change. Aerosol particles entrained at cloud top and edge can affect cloud microphysical and macrophysical properties, but the process is still poorly understood. Here we investigate the cloud microphysical responses to the entrainment of aerosol-laden air in the Pi convection-cloud chamber. Results show that cloud droplet number concentration increases and mean radius of droplets decreases, which leads to narrower droplet size distribution and smaller relative dispersion. These behaviors are generally consistent with the scenario expected from the first aerosol-cloud indirect effect for a constant liquid water content (L). However, L increases significantly in these experiments. Such enhancement of L can be understood as suppression of droplet sedimentation removal due to small droplets. Further, an increase in aerosol concentration from entrainment reduces the effective radius and ultimately increases cloud optical thickness and cloud albedo, making the clouds brighter. These findings are of relevance to the entrainment interface at stratocumulus cloud top, where modeling studies have suggested sedimentation plays a strong role in regulating L. Therefore, the results provide insights into the impacts of entrainment of aerosol-laden air on cloud, precipitation, and climate.more » « less
An official website of the United States government
