skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2113391

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The addition and refreezing of liquid water to Greenland’s accumulation area are increasingly important processes for assessing the ice sheet’s present and future mass balance, but uncertain initial conditions, complex infiltration physics and limited field data pose challenges. Satellite-based L-band radiometry offers a promising new tool for observing liquid water in the firn layer, although further validation is needed. This paper compares time series of liquid water amount (LWA) from three percolation zone sites generated by a localized point-model, a regional climate model,in situmeasurement, and L-band radiometric retrievals. LWA integrates the interplay of liquid water generation and refreezing, which often occur simultaneously and repeatedly within firn layers on diurnal, episodic, and seasonal scales offering insights into methods for measuring and modeling meltwater processes. The four LWA records showed average discrepancies of up to 62% nRMSE, reflecting shortcomings inherent to each method. Better agreement between series occurred after excluding the regional climate model record, lowering nRMSE to 8–13%. The agreement between L-band radiometry and other LWA records inspires confidence in this observational tool for understanding firn meltwater processes and serving as a validation target for simulations of water processes in Greenland’s melting firn layer. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract The thermal field within the firn layer on the Greenland Ice Sheet (GrIS) governs meltwater retention processes, firn densification with surface elevation change, and heat transfer from the surface boundary to deep ice. However, there are few observational data to constrain these processes with only sparse in situ temperature time series that do not extend through the full firn depth. Here, we quantify the thermal structure of Western Greenland’s firn column using instrumentation installed in an elevation transect of boreholes extending to 30 and 96 m depths. During the high‐melt summer of 2019, heat gain in the firn layer showed strong elevation dependency, with greater uptake and deeper penetration of heat at lower elevations. The bulk thermal conductivity increased by 15% per 100 m elevation loss due to higher density related to ice layers. Nevertheless, the conductive heat gain remained relatively constant along the transect due to stronger temperature gradients in the near surface firn at higher elevations. The primary driver of heat gain during this high melt summer was latent heat transfer, which increased up to ten‐fold over the transect, growing by 34 MJ m−2per 100 m elevation loss. The deep‐firn temperature gradient beneath the seasonally active layer doubled over a 270‐m elevation drop across the study transect, increasing heat flux from the firn layer into deep ice at lower elevations. Our in situ firn temperature time series offers observational constraints for modeling studies and insights into the future evolution of the percolation zone in a warmer climate. 
    more » « less
  3. Abstract. Quantifying the total liquid water amounts (LWAs) in the Greenland ice sheet (GrIS) is critical for understanding GrIS firn processes, mass balance, and global sea level rise. Although satellite microwave observations are very sensitive to ice sheet melt and thus can provide a way of monitoring the ice sheet melt globally, estimating total LWA, especially the subsurface LWA, remains a challenge. Here, we present a microwave retrieval of LWA over Greenland using enhanced-resolution L-band brightness temperature (TB) data products from the National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite for the 2015–2023 period. L-band signals receive emission contributions deep in the ice sheet and are sensitive to the liquid water content (LWC) in the firn column. Therefore, they can estimate the surface-to-subsurface LWA, unlike higher-frequency signals (e.g., 18 and 37 GHz bands), which are limited to the top few centimeters of the surface snow during the melt. We used vertically polarized TB (V-pol TB) with empirically derived thresholds to detect liquid water and identify distinct ice sheet zones. A forward model based on radiative transfer (RT) in the ice sheet was used to simulate TB. The simulated TB was then used in an inversion algorithm to estimate LWA. Finally, the retrievals were compared with the LWA obtained from two sources. The first source was a locally calibrated ice sheet energy and mass balance (EMB) model, and the second source was the Glacier Energy and Mass Balance (GEMB) model within NASA's Ice-sheet and Sea-level System Model (ISSM). Both models were forced by in situ measurements from six automatic weather stations (AWSs) of the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Climate Network (GC-Net) located in the percolation zone of the GrIS. The retrievals show generally good agreement with both the references, demonstrating the potential for advancing our understanding of ice sheet physical processes to better project Greenland's contribution to the global sea level rise in response to the warming climate. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026