Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recent evidence has revealed that strong coupling between the lower atmosphere and the thermosphere (100 km) occurs on intra‐seasonal (IS) timescales ( 30–90 days). The Madden‐Julian Oscillation (MJO), a key source of IS variability in tropical convection and circulation, influences the generation and propagation of atmospheric tides and is believed to be a significant driver of thermospheric IS oscillations (ISOs). However, limited satellite observations in the “thermospheric gap” (100–300 km) and challenges faced by numerical models in characterizing this region have hindered a comprehensive understanding of this connection. This study uses an Ionospheric Connection Explorer (ICON)‐adapted version of the Thermosphere Ionosphere Electrodynamics General Circulation Model, incorporating lower boundary tides from Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) observations, to quantify the impact of the upward‐propagating tidal spectrum on thermospheric ISOs and elucidate connections to the MJO. Thermospheric zonal and diurnal mean zonal winds exhibit prominent ( 20 m/s) tidally driven ISOs throughout 2020–2021, largest at low latitudes near 110–150 km altitude. Correlation analyses confirm a robust connection between thermospheric ISOs, tides, and the MJO. Additionally, Hovmöller diagrams show eastward tidal propagation consistent with the MJO and concurrent Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) observations. This study demonstrates that vertically propagating tides play a crucial role in linking IS variability from the lower atmosphere to the thermosphere, with the MJO identified as a primary driver of this whole‐atmosphere teleconnection. Understanding these connections is vital for advancing our knowledge in space physics, particularly regarding the dynamics of the upper atmosphere and ionosphere.more » « less
-
Abstract The plasma and neutral density variations, interactions and coupling processes within ±30° latitudes are examined concurrently by the DMSP‐F18 and Swarm‐C satellite during geomagnetically quiet years in 2020–2021. The wavenumber (WN) patterns are computed in the form of neutral and electron density for two altitudes and their latitudinal profiles are analyzed. We observe that the WN1 structure of the electron density has a significant seasonal dependence in the topside ionosphere and dominates all other structures but WN2 neutral density amplitude dominates all other structures in the middle thermosphere (∼440 km). Additionally, we analyze vertical‐temporal‐latitudinal tidal structures from the Climatological Tidal Model of the Thermosphere (CTMT) to find evidence for the modulation of the large‐scale waves (LSWs) neutral density structures. Through the examination of the in situ observational and modeling approaches, we show that the tidal contributors of WN structures obtained from CTMT can capture the influence of terrestrial sources on the WN structures of plasma‐neutral density and imprint the corresponding vertical coupling in the IT system. Correlation analysis reveals that the amplitudes of the WN1 and WN3 structures of electron density in topside ionosphere and those of neutral density in the middle thermosphere show intermittent but significant correlations with each other, unlike the WN2 and WN4 structures. This study provides new insights into the topside ionospheric response to wave driving in the lower atmosphere, which ultimately improves our capability to understand the interaction and vertical coupling of large‐scale structures, thereby advancing our predictive capabilities of space weather critical for satellite operations.more » « less
-
Abstract This study focuses on understanding what drives the previously observed deep nighttime ionospheric hole in the American sector during the January 2013 sudden stratospheric warming (SSW). Performing a set of numerical experiments with the thermosphere‐ionosphere‐mesosphere‐electrodynamics general circulation model (TIME‐GCM) constrained by a high‐altitude version of the Navy Global Environmental Model, we demonstrate that this nighttime ionospheric hole was the result of increased poleward and down magnetic field line plasma motion at low and midlatitudes in response to alteredF‐region neutral meridional winds. Thermospheric meridional wind modifications that produced this nighttime depletion resulted from the well‐known enhancements in semidiurnal tidal amplitudes associated with stratospheric warming (SSWs) in the upper mesosphere and thermosphere. Investigations into other deep nighttime ionospheric depletions and their cause were also considered. Measurements of total electron content from Global Navigation Satellite System receivers and additional constrained TIME‐GCM simulations showed that nighttime ionospheric depletions were also observed on several nights during the January‐February 2010 SSW, which resulted from the same forcing mechanisms as those observed in January 2013. Lastly, the recent January 2021 SSW was examined using Modern‐Era Retrospective Analysis for Research and Applications, Version 2, COSMIC‐2 Global Ionospheric Specification electron density, and ICON Michelson Interferometer for Global High‐Resolution Thermospheric Imaging horizontal wind data and revealed a deep nighttime ionospheric depletion in the American sector was likely driven by modified meridional winds in the thermosphere. The results shown herein highlight the importance of thermospheric winds in driving nighttime ionospheric variability over a wide latitude range.more » « less
-
Growing evidence indicates that a selected group of global-scale waves from the lower atmosphere constitute a significant source of ionosphere-thermosphere (IT, 100–600 km) variability. Due to the geometry of the magnetic field lines, this IT coupling occurs mainly at low latitudes ( 30°) and is driven by waves originating in the tropical troposphere such as the diurnal eastward propagating tide with zonal wave number s = −3 (DE3) and the quasi-3-day ultra-fast Kelvin wave with s = −1 (UFKW1). In this work, over 2 years of simultaneousin situion densities from Ion Velocity Meters (IVMs) onboard the Ionospheric Connection Explorer (ICON) near 590 km and the Scintillation Observations and Response of the Ionosphere to Electrodynamics (SORTIE) CubeSat near 420 km, along with remotely-sensed lower (ca. 105 km) and middle (ca. 220 km) thermospheric horizontal winds from ICON’s Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) are employed to demonstrate a rich spectrum of waves coupling these IT regions. Strong DE3 and UFKW1 topside ionospheric variations are traced to lower thermospheric zonal winds, while large diurnal s = 2 (DW2) and zonally symmetric (D0) variations are traced to middle thermospheric winds generatedin situ. Analyses of diurnal tides from the Climatological Tidal Model of the Thermosphere (CTMT) reveal general agreement near 105 km, with larger discrepancies near 220 km due toin situtidal generation not captured by CTMT. This study highlights the utility of simultaneous satellite measurements for studies of IT coupling via global-scale waves.more » « less
An official website of the United States government
