skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2114127

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ambient temperature (Ta) is a critical abiotic factor for insects that cannot maintain a constant body temperature (Tb). Interestingly, Ta varies during the day, between seasons and habitats; insects must constantly cope with these variations to avoid reaching the deleterious effects of thermal stress. To minimize these risks, insects have evolved a set of physiological and behavioral thermoregulatory processes as well as molecular responses that allow them to survive and perform under various thermal conditions. These strategies range from actively seeking an adequate environment, to cooling down through the evaporation of body fluids and synthesizing heat shock proteins to prevent damage at the cellular level after heat exposure. In contrast, endothermy may allow an insect to fight parasitic infections, fly within a large range of Ta and facilitate nest defense. Since May (1979), Casey (1988) and Heinrich (1993) reviewed the literature on insect thermoregulation, hundreds of scientific articles have been published on the subject and new insights in several insect groups have emerged. In particular, technical advancements have provided a better understanding of the mechanisms underlying thermoregulatory processes. This present Review aims to provide an overview of these findings with a focus on various insect groups, including blood-feeding arthropods, as well as to explore the impact of thermoregulation and heat exposure on insect immunity and pathogen development. Finally, it provides insights into current knowledge gaps in the field and discusses insect thermoregulation in the context of climate change. 
    more » « less
  2. Combining thermopreference (Tp) and CO2-gated heat-seeking assays, we studied the thermal preferendum and response to thermal cues in three Culex mosquito species exhibiting differences in native habitat and host preference (e.g., biting cold and/or warm-blooded animals). Results show that these species differ in both Tp and heat-seeking behavior. In particular, we found that Culex territans, which feed primarily on cold-blood hosts, did not respond to heat during heat-seeking assays, regardless of the CO2 concentration, but exhibited an intermediate Tp during resting. In contrast, Cx. quinquefasciatus, which feeds on warm blooded hosts, sought the coolest locations on a thermal gradient and responded only moderately to thermal stimuli when paired with CO2 at higher concentrations. The third species, Cx. tarsalis, which has been shown to feed on a wide range of hosts, responded to heat when paired with high CO2 levels and exhibited a high Tp. This study provides the first insights into the role of heat and CO2 in the host seeking behavior of three disease vectors in the Culex genus and highlights differences in preferred resting temperatures. 
    more » « less