skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2114192

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A Physical Unclonable Function (PUF) is a security primitive that exploits inherent variations in manufacturing protocols to generate unique, random‐like identifiers. These identifiers are used for authentication and encryption purposes in hardware security applications in the semiconductor industry. Inspired by the success of silicon PUFs, herein it is leverage Terminal deoxynucleotidyl Transferase (TdT), a template‐independent polymerase belonging to the X‐family of DNA polymerases, to augment the intrinsic entropy generated during DNA lesion repair and rapidly produce genetic PUFs that satisfy the following properties: robustness (i.e., they repeatedly produce the same output), uniqueness (i.e., they do not coincide with any other identically produced PUF), and unclonability (i.e., they are virtually impossible to replicate). Furthermore, a post‐sequencing feature selection methodology based on logistic regression to facilitate PUF classification is developed. This experimental and computational pipeline drastically reduces production time and cost compared to conventional genetic barcoding without compromising the stringent PUF criteria of uniqueness and unclonability. This results provide novel insights into the function of TdT and represent a major step toward utilization of PUFs as a biosecurity primitive for cell line authentication and provenance attestation. 
    more » « less
  2. Abstract Objective. The safe delivery of electrical current to neural tissue depends on many factors, yet previous methods for predicting tissue damage rely on only a few stimulation parameters. Here, we report the development of a machine learning approach that could lead to a more reliable method for predicting electrical stimulation-induced tissue damage by incorporating additional stimulation parameters.Approach. A literature search was conducted to build an initial database of tissue response information after electrical stimulation, categorized as either damaging or non-damaging. Subsequently, we used ordinal encoding and random forest for feature selection, and investigated four machine learning models for classification: Logistic Regression, K-nearest Neighbor, Random Forest, and Multilayer Perceptron. Finally, we compared the results of these models against the accuracy of the Shannon equation.Main Results. We compiled a database with 387 unique stimulation parameter combinations collected from 58 independent studies conducted over a period of 47 years, with 195 (51%) categorized as non-damaging and 190 (49%) categorized as damaging. The features selected for building our model with a Random Forest algorithm were: waveform shape, geometric surface area, pulse width, frequency, pulse amplitude, charge per phase, charge density, current density, duty cycle, daily stimulation duration, daily number of pulses delivered, and daily accumulated charge. The Shannon equation yielded an accuracy of 63.9% using akvalue of 1.79. In contrast, the Random Forest algorithm was able to robustly predict whether a set of stimulation parameters was classified as damaging or non-damaging with an accuracy of 88.3%.Significance. This novel Random Forest model can facilitate more informed decision making in the selection of neuromodulation parameters for both research studies and clinical practice. This study represents the first approach to use machine learning in the prediction of stimulation-induced neural tissue damage, and lays the groundwork for neurostimulation driven by machine learning models. 
    more » « less
  3. NA (Ed.)
    NA 
    more » « less
  4. Finley, Stacey D (Ed.)
    In experiments, the distributions of mRNA or protein numbers in single cells are often fitted to the random telegraph model which includes synthesis and decay of mRNA or protein, and switching of the gene between active and inactive states. While commonly used, this model does not describe how fluctuations are influenced by crucial biological mechanisms such as feedback regulation, non-exponential gene inactivation durations, and multiple gene activation pathways. Here we investigate the dynamical properties of four relatively complex gene expression models by fitting their steady-state mRNA or protein number distributions to the simple telegraph model. We show that despite the underlying complex biological mechanisms, the telegraph model with three effective parameters can accurately capture the steady-state gene product distributions, as well as the conditional distributions in the active gene state, of the complex models. Some effective parameters are reliable and can reflect realistic dynamic behaviors of the complex models, while others may deviate significantly from their real values in the complex models. The effective parameters can also be applied to characterize the capability for a complex model to exhibit multimodality. Using additional information such as single-cell data at multiple time points, we provide an effective method of distinguishing the complex models from the telegraph model. Furthermore, using measurements under varying experimental conditions, we show that fitting the mRNA or protein number distributions to the telegraph model may even reveal the underlying gene regulation mechanisms of the complex models. The effectiveness of these methods is confirmed by analysis of single-cell data forE. coliand mammalian cells. All these results are robust with respect to cooperative transcriptional regulation and extrinsic noise. In particular, we find that faster relaxation speed to the steady state results in more precise parameter inference under large extrinsic noise. 
    more » « less
  5. Solitary fibrous tumor (SFT) is a rare soft-tissue sarcoma. This nonhereditary cancer is the result of an environmental intrachromosomal gene fusion between NAB2 and STAT6 on chromosome 12, which fuses the activation domain of STAT6 with the repression domain of NAB2. Currently there is not an approved chemotherapy regimen for SFTs. The best response on available pharmaceuticals is a partial response or stable disease for several months. The purpose of this study is to investigate the potential of RNA-based therapies for the treatment of SFTs. Specifically, in vitro SFT cell models were engineered to harbor the characteristic NAB2–STAT6 fusion using the CRISPR/SpCas9 system. Cell migration as well as multiple cancer-related signaling pathways were increased in the engineered cells as compared to the fusion-absent parent cells. The SFT cell models were then used for evaluating the targeting efficacies of NAB2–STAT6 fusion-specific antisense oligonucleotides (ASOs) and CRISPR/CasRx systems. Our results showed that fusion specific ASO treatments caused a 58% reduction in expression of fusion transcripts and a 22% reduction in cell proliferation after 72 h in vitro. Similarly, the AAV2-mediated CRISPR/CasRx system led to a 59% reduction in fusion transcript expressions in vitro, and a 55% reduction in xenograft growth after 29 days ex vivo. 
    more » « less
  6. CRISPR-engineered physical unclonable functions establish a foundational security technology for provenance attestation protocols. 
    more » « less