skip to main content


Search for: All records

Award ID contains: 2114393

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Adrish, Muhammad (Ed.)
  3. null (Ed.)
    The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in 2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1 million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and may need mechanical ventilation to help them breath. Being able to predict which patients with COVID-19 will become severely ill could help hospitals around the world manage the huge influx of patients caused by the pandemic and save lives. Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission, and the need for mechanical ventilation with more than 86% accuracy, based on patient characteristics, clinical symptoms, laboratory results and chest x-rays. Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male, having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue damage, severe inflammation or oxygen deprivation in the body's tissues were important warning signs of severe disease. The results provide a more detailed picture of the patients who are likely to suffer from severe forms of COVID-19. Using the predictive models may help physicians identify patients who appear okay but need closer monitoring and more aggressive treatment. The models may also help policy makers decide who needs workplace accommodations such as being allowed to work from home, which individuals may benefit from more frequent testing, and who should be prioritized for vaccination when a vaccine becomes available. 
    more » « less
  4. null (Ed.)
    Background The novel coronavirus SARS-CoV-2 and its associated disease, COVID-19, have caused worldwide disruption, leading countries to take drastic measures to address the progression of the disease. As SARS-CoV-2 continues to spread, hospitals are struggling to allocate resources to patients who are most at risk. In this context, it has become important to develop models that can accurately predict the severity of infection of hospitalized patients to help guide triage, planning, and resource allocation. Objective The aim of this study was to develop accurate models to predict the mortality of hospitalized patients with COVID-19 using basic demographics and easily obtainable laboratory data. Methods We performed a retrospective study of 375 hospitalized patients with COVID-19 in Wuhan, China. The patients were randomly split into derivation and validation cohorts. Regularized logistic regression and support vector machine classifiers were trained on the derivation cohort, and accuracy metrics (F1 scores) were computed on the validation cohort. Two types of models were developed: the first type used laboratory findings from the entire length of the patient’s hospital stay, and the second type used laboratory findings that were obtained no later than 12 hours after admission. The models were further validated on a multicenter external cohort of 542 patients. Results Of the 375 patients with COVID-19, 174 (46.4%) died of the infection. The study cohort was composed of 224/375 men (59.7%) and 151/375 women (40.3%), with a mean age of 58.83 years (SD 16.46). The models developed using data from throughout the patients’ length of stay demonstrated accuracies as high as 97%, whereas the models with admission laboratory variables possessed accuracies of up to 93%. The latter models predicted patient outcomes an average of 11.5 days in advance. Key variables such as lactate dehydrogenase, high-sensitivity C-reactive protein, and percentage of lymphocytes in the blood were indicated by the models. In line with previous studies, age was also found to be an important variable in predicting mortality. In particular, the mean age of patients who survived COVID-19 infection (50.23 years, SD 15.02) was significantly lower than the mean age of patients who died of the infection (68.75 years, SD 11.83; P<.001). Conclusions Machine learning models can be successfully employed to accurately predict outcomes of patients with COVID-19. Our models achieved high accuracies and could predict outcomes more than one week in advance; this promising result suggests that these models can be highly useful for resource allocation in hospitals. 
    more » « less