skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2114593

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract No-take marine protected areas (MPAs) can mitigate the effects of overfishing, climate change and habitat degradation, which are leading causes of an unprecedented global biodiversity crisis. However, assessing the effectiveness of MPAs, especially in remote oceanic islands, can be logistically challenging and often restricted to relatively shallow and accessible environments. Here, we used a long-term dataset (2010–2019) collected by theDeepSeesubmersible of the Undersea Hunter Group that operates in Isla del Coco National Park, Costa Rica, to (1) determine the frequency of occurrence of elasmobranch species at two depth intervals (50–100 m; 300–400 m), and (2) investigate temporal trends in the occurrence of common elasmobranch species between 2010 and 2019, as well as potential drivers of the observed changes. Overall, we observed 17 elasmobranch species, 15 of which were recorded on shallow dives (50–100 m) and 11 on deep dives (300–400 m). We found a decreasing trend in the probability of occurrence ofCarcharhinus falciformisover time (2010–2019), while other species (e.g.Taeniurops meyeni,Sphyrna lewini,Carcharhinus galapagensis,Triaenodon obesus, andGaleocerdo cuvier) showed an increasing trend. Our study suggests that some species likeS. lewinimay be shifting their distributions towards deeper waters in response to ocean warming but may also be sensitive to low oxygen levels at greater depths. These findings highlight the need for regional 3D environmental information and long-term deepwater surveys to understand the extent of shark and ray population declines in the ETP and other regions, as most fishery-independent surveys from data-poor countries have been limited to relatively shallow waters. 
    more » « less
  2. Abstract The current United Nations Decade of Ocean Science for Sustainable Development (2021–2030; hereafter, the Decade) offers a unique opportunity and framework to globally advance ocean science and policy. Achieving meaningful progress within the Decade requires collaboration and coordination across Decade Actions (Programs, Projects, and Centres). This coordination is particularly important for the deep ocean, which remains critically under‐sampled compared to other ecosystems. Despite the limited sampling, the deep ocean accounts for over 95% of Earth's habitable space, plays a crucial role in regulating the carbon cycle and global temperatures, and supports diverse ecosystems. To collectively advance deep‐ocean science, we gathered representatives from 20 Decade Actions that focus at least partially on the deep ocean. We identified five broad themes that aim to advance deep‐ocean science in alignment with the Decade's overarching 10 Challenges: natural capital and the blue economy, biodiversity, deep‐ocean observing, best practices in data sharing, and capacity building. Within each theme, we propose concrete objectives (termed Cohesive Asks) and milestones (Targets) for the deep‐ocean community. Developing these Cohesive Asks and Targets reflects a commitment to better coordination across deep‐ocean Decade Actions. We aim to build bridges across deep‐ocean disciplines, which encompass natural science, ocean observing, policy, and capacity development. 
    more » « less
  3. The deep ocean is a vast reservoir of new species to science, and each discovery improves our ecological understanding of these remote ecosystems. One island-like ecosystem is the Atacama Trench (Southeast Pacific Ocean), where the hadal depths (>6000 m) host a distinctive endemic community. Unlike the communities of other hadal subduction trenches, predatory (non-scavenging) amphipods have not been documented or collected from the Atacama Trench. In this study, we applied an integrative taxonomic approach to describe a new predatory amphipod in the Eusiridae Stebbing, Citation1888 family collected from 7902 m during the 2023 IDOOS Expedition and provide an updated global Eusiridae key with the 14th genus. Morphology and DNA barcoding robustly supported raising a new genus separate from the systematically similar genera Dorotea. Dulcibella camanchaca gen. nov. sp. nov. is a large amphipod (holotype: 38.9 mm length) with diagnostic features that include: a smooth dorsal body, 12 spines on the outer maxilla 1 plate, subsimilar and strongly subchelate gnathopods with broad carpus lobes, the pereopods 3 and 4 dactyli are 0.45× of the respective propodus and pereopods 5 to 7 dactyli are 0.6×, a distal spiniform process on the peduncle of uropod 1, and an elongated but weakly cleft telson. Together, Dulcibella camanchaca gen. nov. sp. nov. is a novel predator and reinforces the eco-evolutionary distinctiveness of the Atacama Trench. 
    more » « less
  4. Leading deep-sea research expeditions requires a breadth of training and experience, and the opportunities for Early Career Researchers (ECRs) to obtain focused mentorship on expedition leadership are scarce. To address the need for leadership training in deep-sea expeditionary science, the Crustal Ocean Biosphere Research Accelerator (COBRA) launched a 14-week virtual Master Class with both synchronous and asynchronous components to empower students with the skills and tools to successfully design, propose, and execute deep-sea oceanographic field research. The Master Class offered customized and distributed training approaches and created an open-access syllabus with resources, including reading material, lectures, and on-line resources freely-available on the Master Class website (cobra.pubpub.org). All students were Early Career Researchers (ECRs, defined here as advanced graduate students, postdoctoral scientists, early career faculty, or individuals with substantial industry, government, or NGO experience) and designated throughout as COBRA Fellows. Fellows engaged in topics related to choosing the appropriate deep-sea research asset for their Capstone “dream cruise” project, learning about funding sources and how to tailor proposals to meet those source requirements, and working through an essential checklist of pre-expedition planning and operations. The Master Class covered leading an expedition at sea, at-sea operations, and ship-board etiquette, and the strengths and challenges of telepresence. It also included post-expedition training on data management strategies and report preparation and outputs. Throughout the Master Class, Fellows also discussed education and outreach, international ocean law and policy, and the importance and challenges of team science. Fellows further learned about how to develop concepts respectfully with regard to geographic and cultural considerations of their intended study sites. An assessment of initial outcomes from the first iteration of the COBRA Master Class reinforces the need for such training and shows great promise with one-quarter of the Fellows having submitted a research proposal to national funding agencies within six months of the end of the class. As deep-sea research continues to accelerate in scope and speed, providing equitable access to expedition training is a top priority to enable the next generation of deep-sea science leadership. 
    more » « less
  5. Abstract The deep seafloor covers two-thirds of Earth's surface area, but our understanding of the ecosystems and resources found in the deep ocean, as well as the ability of deep-sea ecosystems to withstand human perturbation, is limited. These deep-sea habitats demand urgent study as there are emergent human uses in the form of deep-sea mining and carbon sequestration that will fundamentally alter physical, chemical, and biological conditions that took millions of years to establish. We propose the international network COBRA, a research accelerator for the crustal ocean biosphere. COBRA will bring together diverse stakeholders and experts, including interdisciplinary academic and government scientists, private institutions, policy makers, data systems engineers, industry experts, and others to coordinate efforts that generate new knowledge and inform decision making about activities that could affect the deep ocean and, by extension, all of society. We will also train the next generation of leaders in ocean exploration, science, and policy through an innovative virtual program to carry this effort into future generations of ocean and earth science research. COBRA will inform policies relating to emergent industrial uses of the deep ocean, decrease the likelihood of serious harm to the environment, and maintain ecosystem services for the benefit of society. 
    more » « less