Amplified warming of high latitudes and rapid thaw of frozen ground threaten permafrost carbon stocks. The presence of permafrost modulates water infiltration and flow, as well as sediment transport, on soil-mantled slopes, influencing the balance of advective fluvial processes to diffusive processes on hillslopes in ways that are different from temperate settings. These processes that shape permafrost landscapes also impact the carbon stored on soil-mantled hillslopes via temperature, saturation, and slope stability such that carbon stocks and landscape morphometry should be closely linked. We studied
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
69,000 headwater basins between 25° and 90 °N to determine whether the thermal state of the soil sets the balance between hillslope (diffusive) and fluvial (advective) erosion processes, as evidenced by the density of the channel networks (i.e., drainage density) and the proportion of convex to concave topography (hillslopes and river valleys, respectively). Watersheds within permafrost regions have lower drainage densities than regions without permafrost, regardless of watershed glacial history, mean annual precipitation, and relief. We find evidence that advective fluvial processes are inhibited in permafrost landscapes compared to their temperate counterparts. Frozen soils likely inhibit channel development, and we predict that climate warming will lower incision thresholds to promote growth of the channel network in permafrost landscapes. By demonstrating how the balance of advective versus diffusive processes might shift with future warming, we gain insight into the mechanisms that shift these landscapes from sequestering to exporting carbon. Free, publicly-accessible full text available February 6, 2025 -
Alluvial fans are found across a range of climates and are built from a combination of fluvial and debris flow processes. Correct identification of process is critical to reconstructing the climate and water histories of alluvial fans on Earth and Mars. Theory and data from subaerial Earth fans are often used to estimate paleoflow discharges and sediment fluxes for martian fans; however, most terrestrial work has been conducted on fans that are in hot, dry climates with runoff sourced from rainfall. This differs from the prevailing interpretation that martian fans were sourced from snowmelt under warming periglacial conditions. To characterize processes and rates of periglacial fan formation, we conducted a field-based study of the Black Mountain alluvial fan in the Aklavik Range, Canada. We observed active fluvial bedload transport as well as several small debris flows that had initiated from ice-filled gullies. Following a runoff event of ∼0.005 mm/hr to ∼0.2 mm/hr across the fan, we estimated sediment fluxes of ∼0.04 m3/hr. Under bankfull conditions, we estimated runoff rates between ∼0.01 mm/hr to ∼14 mm/hr and corresponding sediment fluxes of ∼0.3 m3/hr to ∼550 m3/hr. This suggests that moderate flow events, well below the maximum runoff production rates suggested for Mars, are capable of entraining and transporting appreciable amounts of sediment by fluvial processes. However, sedimentological and geomorphological observations suggest that ∼67% of the fan was deposited fluvially; the remainder was deposited by mass flows. Our results emphasize the need to take care in interpreting martian sedimentary processes and climate from fan surface morphology alone.more » « less