Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate the morphologies of the Ge(001) surface that are produced by bombardment with a normally incident, broad argon ion beam at sample temperatures above the recrystallization temperature. Two previously observed kinds of topographies are seen, i.e., patterns consisting of upright and inverted rectangular pyramids, as well as patterns composed of shallow, isotropic basins. In addition, we observe the formation of an unexpected third type of pattern for intermediate values of the temperature, ion energy, and ion flux. In this type of intermediate morphology, isolated peaks with rectangular cross-sections stand above a landscape of shallow, rounded basins. We also extend past theoretical work to include a second-order correction term that comes from the curvature dependence of the sputter yield. For a range of parameter values, the resulting continuum model of the surface dynamics produces patterns that are remarkably similar to the intermediate morphologies we observe in our experiments. The formation of the isolated peaks is the result of a term that is not ordinarily included in the equation of motion, a second-order correction to the curvature dependence of the sputter yield.more » « less
-
We find the spatially averaged sputter yield Y¯ analytically for non-planar surfaces that have slowly varying surface heights h=h(x,y). To begin, nonlocal effects like redeposition of sputtered material and secondary sputtering are neglected. We show that the leading order corrections to Y¯ are proportional to the spatial averages of (∂h/∂x)2 and (∂h/∂y)2. The constants of proportionality can be written in terms of the first and second derivatives of the sputter yield of a flat surface with respect to the ion incidence angle θ. For a range of θ values, Y¯ is a decreasing function of the amplitude of the surface texture. We also determine how the contribution of redeposition to Y¯ depends on the amplitude and characteristic lateral length scale of the surface morphology. As a test of our theory and to quantify the roles of redeposition and secondary sputtering, we performed Monte Carlo simulations of sputtering from Si targets with sinusoidal surfaces by 1 keV Ar+ ions. The theory agrees remarkably well with our Monte Carlo simulations. Our simulations also lead to the notable result that atoms that are sputtered and then strike the surface can themselves cause significant sputtering.more » « less
An official website of the United States government
