Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Genetic predictors of population resilience: A case study of native Brook Trout in headwater streamsAbstract ObjectivePopulations of eastern Brook Trout Salvelinus fontinalis face threats from several sources, such as habitat fragmentation, climate change, and competition with introduced salmonids. As a native species, understanding how these populations will respond to disturbances is paramount to their management and effective conservation. A population's ability to respond to disturbance, its resilience, is influenced by several factors. One such group of factors is population genetics. MethodsWe calculated population resilience metrics based on transient dynamics using population projection matrix models. Long-term demographic data from 23 headwater stream Brook Trout populations were used to parameterize models. Genetic data were collected, and genetic indices were calculated. Partial redundancy analysis was then used to evaluate relationships between resilience metrics and genetic indices. ResultInbreeding coefficient, rarefied allelic richness, pairwise genetic differentiation (FST), and effective population size were all found to be important variables in predicting resilience. ConclusionOur results suggest that genetic isolation may increase the demographic resilience in Brook Trout through faster generation times and higher juvenile survival, but this likely comes at the cost of increased extinction risk and truncated size structures. Genetic indices can provide insight into gene flow between populations, thus the relationship between population connectivity and resilience. Given the importance of connectivity to population resilience, restoring and maintaining movement corridors could affect resilience in headwater Brook Trout populations.more » « less
-
The plastid-targeted transcription factorWhirly1(WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution ofWHY1in four early transitional mycoheterotrophic orchid species in the genusCorallorhizaby synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses withWHY1genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonicalWHY1isoforms assembled from all but the greenestCorallorhizaspecies, including intron retention in some isoforms. WithinCorallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression ofWHY1in only the most photosynthetically capable species and a coincident increase in the number of non-canonicalWHY1isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests ofWHY1selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection inCorallorhizabut did so for relaxed selection in the late-stage full mycoheterotrophic orchidsEpipogium aphyllumandGastrodia elata. Additionally, nucleotide substitutions that most likely impact the function ofWHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role forWHY1in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view ofWHY1evolution across the angiosperms to date.more » « less
-
Lake sturgeon (Acipenser fulvescens) is a species of conservation concern that has been stocked in several Great Lakes (North America) rivers. Lake sturgeon were extirpated in the Ontonagon River in Lake Superior and stocking began in 1998. In 2017, gametes were collected from spawning lake sturgeon (9 females, 36 males) caught at the nearby Sturgeon River spawning ground, generating nine family groups using a 1:4 mating design (n = 862). In 2018, gametes were collected from 3 females and 15 males, generating three family groups, and additional collections of drifting fry from the Sturgeon River were reared in the hatchery, resulting in 84 hatchery-produced and 675 wild-caught fry for stocking in the Ontonagon River. The objective of this study was to compare paternal representation and genetic diversity between the two stocking strategies. Parentage analysis based on genetic data from 12 microsatellite loci determined none of the family groups in the hatchery had equal paternal representation (p < 0.001), while wild-produced offspring had equal paternal representation. Despite the larger number of breeders contributing to the wild-caught larvae, there was no significant difference in genetic diversity between the wild-caught larvae and representative hatchery-produced offspring.more » « less
-
Population genetics can reveal whether colonization of created habitats has been successful and inform future strategies for habitat creation. We used genetic analysis to investigate spotted salamander (Ambystoma maculatum) colonization of created vernal pools and explored the impact of habitat characteristics on the genetic diversity and connectivity of the pools. Our first objective was to examine genetic structure, differentiation, diversity, and potential for a founder effect. Our second objective was to determine if habitat characteristics were associated with effective number of breeders, relatedness, or genetic diversity. We sampled spotted salamander larvae in 31 created vernal pools (1–5 years old) in Monongahela National Forest (WV) in May and June 2015 and 2016. The youngest pools exhibited genetic differentiation, a founder effect, and low effective number of breeders. Effective number of breeders was positively associated with pool age, vegetation cover, pool diameter, and sample size. Vegetation cover was also negatively associated with relatedness. Genetic diversity did not have strong environmental predictors. Our results indicated the effective number of breeders increased and genetic differentiation decreased within 4–5 years of pool creation, a sign of rapid colonization and potential population establishment. Our research also showed that higher vegetative cover within the pool and larger pool diameters could impact habitat quality and should be incorporated into future pool creation.more » « less
-
Lineage-based species definitions applying coalescent approaches to species delimitation have become increasingly popular. Yet, the application of these methods and the recognition of lineage-only definitions have recently been questioned. Species delimitation criteria that explicitly consider both lineages and evidence for ecological role shifts provide an opportunity to incorporate ecologically meaningful data from multiple sources in studies of species boundaries. Here, such criteria were applied to a problematic group of mycoheterotrophic orchids, the Corallorhiza striata complex, analysing genomic, morphological, phenological, reproductive-mode, niche, and fungal host data. A recently developed method for generating genomic polymorphism data-ISSRseq-demonstrates evidence for four distinct lineages, including a previously unidentified lineage in the Coast Ranges and Cascades of California and Oregon, USA. There is divergence in morphology, phenology, reproductive mode, and fungal associates among the four lineages. Integrative analyses, conducted in population assignment and redundancy analysis frameworks, provide evidence of distinct genomic lineages and a similar pattern of divergence in the extended data, albeit with weaker signal. However, none of the extended data sets fully satisfy the condition of a significant role shift, which requires evidence of fixed differences. The four lineages identified in the current study are recognized at the level of variety, short of comprising different species. This study represents the most comprehensive application of lineage + role to date and illustrates the advantages of such an approach.more » « less
An official website of the United States government
