skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2117190

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Spectre class of transient execution security attacks on modern microprocessors rely on speculative execution. Software Controlled Speculation (SCS) was proposed as a microarchitecture‐level defense in the original Spectre paper and has also been adopted by ARM. The idea with SCS is to allow a mode in the microarchitecture, where instructions that read from memory are not allowed to execute speculatively. Errors or malicious fault‐injections in the implementation of SCS can still render the microarchitecture vulnerable to Spectre attacks. A formal verification method is proposed that can check the correctness of the implementation of SCS and detect any faults. The method has been demonstrated to be very efficient on two sets of benchmarks and provides accurate detection of implementation faults in SCS. 
    more » « less
  2. Abstract Transient execution attacks such as Spectre and Meltdown exploit speculative execution in modern microprocessors to leak information via cache side‐channels. Software solutions to defend against many transient execution attacks employ thelfenceserialising instruction, which does not allow instructions that come after thelfenceto execute out‐of‐order with respect to instructions that come before thelfence. However, errors and Trojans in the hardware implementation oflfencecan be exploited to compromise the software mitigations that uselfence. The aforementioned security gap has not been identified and addressed previously. The authors provide a formal method solution that addresses the verification oflfencehardware implementation. The authors also show how hardware Trojans can be designed to circumventlfenceand demonstrate that their verification approach will flag such Trojans as well. The authors have demonstrated the efficacy of our approach using RSD, which is an open source RISC‐V based superscalar out‐of‐order processor. 
    more » « less