skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2117389

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract New particle formation (NPF) has been observed at various locations, but NPF does not occur in isoprene‐dominant forests. Recent laboratory studies were conducted to understand the role of isoprene in biogenic NPF, and these studies show that isoprene can suppress biogenic NPF, with contradicting theories. To reconcile these discrepancies, we conducted flow tube experiments of biogenic nucleation under a wide range of isoprene over monoterpene carbon ratios (R) and oxidant conditions (OH vs. ozone). Our results show isoprene either suppresses or enhances biogenic NPF, depending onRand oxidation regimes, demonstrating the synergetic effects of isoprene and HOx(OH and HO2) on biogenic NPF. Whereas the suppression of NPF by isoprene is due to the product suppression effects of monoterpene dimers (C20), RO2 + HO2termination reactions also play important roles in suppressing the dimer formation, another likely process to suppress NPF in the atmosphere. 
    more » « less