skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2117585

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical tweezer (OT) single-molecule force spectroscopy is a powerful method to map out the energy landscape of biological complexes and has found increasing applications in academic and pharmaceutical research. The dominant method to extract molecular conformation transitions from the thermal diffusion-broadened trajectories of the microscopic OT probes attached to the single molecule of interest is through hidden Markov models (HMMs). In standard applications, the HMMs assume a white noise spectrum of the probes superimposed onto the molecular signal. Here, we demonstrate, through theoretical derivation, computer modeling and experimental measurements that this standard white noise HMM (wnHMM) misses key features of real OT data. The deviation is most pronounced at higher frequencies because the white noise model does not account for the overdamped nature of particle diffusion in an OT harmonic potential in aqueous environments. To address this, we derive how to incorporate autoregression between consecutive data points into a HMM, and demonstrate through modeling and experiment that such an autoregressive HMM (arHMM) captures real OT data behavior across all frequency ranges. Through analysis of real OT data we recorded on a single DNA hairpin undergoing folding and unfolding transitions, we show that the wnHMM extracts lifetimes that are at least a factor of 2 faster and less consistent than the arHMM results, which match expectations and prior measurements. Overall, our work suggests that arHMM should be the default model choice for analysis OT single-molecule transitions and that its use will improve the fidelity and accuracy of single-molecule force spectroscopy measurements. 
    more » « less