skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2117934

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phenoxazines are a successful class of organic photoredox catalysts (PCs) with tunable redox and photophysical properties. Originally, we aimed to realize more reducing phenoxazine PCs through heteroatom core substituted (HetCS) derivatives, while maintaining an efficiently oxidizing PC·+. However, core modification with thioether or ether functionality to a PC that exhibits photoinduced intramolecular charge transfer (CT) negligibly alters the singlet excited state reduction potential (ES1°*), while yielding a less oxidizing PC·+(E1/2) (E1/2 = 0.50–0.64 V vs. SCE) compared to the noncore modified PC1(0.68 V vs. SCE). Photophysical characterization of HetCS PCs revealed that increasing electron density on the core of a CT exhibiting PC stabilizes the emissive state and PC·+, resulting in a relatively unchangedES1°* compared to PC1. In contrast, modifying the core of a PC that does not exhibit CT yields a highly reducingES1°* (PC3= −2.48 V vs. SCE) compared to its CT equivalent (PC1d= −1.68 V vs. SCE). The impact of PC property on photocatalytic ability was evaluated through organocatalyzed atom transfer radical polymerization (O‐ATRP). HetCS PCs were able to yield poly(methyl methacrylate) with low dispersity and moderate targeted molecular weight as evaluated by initiator efficiency (I*) in DMAc (Ð= 1.20–1.26;I*= 47–57%). Ultimately, this work provides insight into how phenoxazine PC properties are altered through structural modification, which can inform future PC design. 
    more » « less
  2. Free, publicly-accessible full text available November 10, 2026
  3. Metal-based catalysts with large ionic radii and longer and more ionic metal–polymer bonds can control both stereoselectivity of polymerization and chain cyclization leading to stereoregular cyclic P3HB. 
    more » « less
    Free, publicly-accessible full text available April 8, 2026
  4. Free, publicly-accessible full text available March 21, 2026
  5. RNA oxidation, predominantly through the accumulation of 8-oxo-7,8-dihydroguanosine (8-oxo-rG), represents an important biomarker for cellular oxidative stress. Polynucleotide phosphorylase (PNPase) is a 3′-5′ exoribonuclease that has been shown to preferentially recognize 8-oxo-rG-containing RNA and protect Escherichia coli cells from oxidative stress. However, the impact of 8-oxo-rG on PNPase-mediated RNA degradation has not been studied. Here, we show that the presence of 8-oxo-rG in RNA leads to catalytic stalling of E. coli PNPase through in vitro RNA degradation experiments and electrophoretic analysis. We also link this stalling to the active site of the enzyme through resolution of single-particle cryo-EM structures for PNPase in complex with singly or doubly oxidized RNA oligonucleotides. Following identification of Arg399 as a key residue in recognition of both single and sequential 8-oxo-rG nucleotides, we perform follow-up in vitro analysis to confirm the importance of this residue in 8-oxo-rG-specific PNPase stalling. Finally, we investigate the effects of mutations to active site residues implicated in 8-oxo-rG binding through E. coli cell growth experiments under H2O2-induced oxidative stress. Specifically, Arg399 mutations show significant effects on cell growth under oxidative stress. Overall, we demonstrate that 8-oxo-rG-specific stalling of PNPase is relevant to bacterial survival under oxidative stress and speculate that this enzyme might associate with other cellular factors to mediate this stress. 
    more » « less