skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2118158

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We demonstrate a new type of analysis for the DRIFT-IId directional dark matter detector using a machine learning algorithm called a Random Forest Classifier. The analysis labels events as signal or background based on a series of selection parameters, rather than solely applying hard cuts. The analysis efficiency is shown to be comparable to our previous result at high energy but with increased efficiency at lower energies. This leads to a projected sensitivity enhancement of one order of magnitude below a WIMP mass of 15 GeV c -2 and a projected sensitivity limit that reaches down to a WIMP mass of 9 GeV c -2 , which is a first for a directionally sensitive dark matter detector. 
    more » « less