- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002000002000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Rubio-González, Cindy (4)
-
Chapman, Patrick J (2)
-
Georgakoudis, Giorgis (2)
-
Laguna, Ignacio (2)
-
Miao, Dolores (2)
-
Parasyris, Konstantinos (2)
-
Thakur, Aditya V (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper presents a new approach to improve static program analysis using Large Language Models (LLMs). The approachinterleavescalls to the static analyzer and queries to the LLM. The query to the LLM is constructed based on intermediate results from the static analysis, and subsequent static analysis uses the results from the LLM query. We apply our approach to the problem oferror-specification inference: given systems code written in C, infer the set of values that each function can return on error. Such error specifications aid in program understanding and can be used to find error-handling bugs. We implemented our approach by incorporating LLMs into EESI, the state-of-the-art static analysis for error-specification inference. Compared to EESI, our approach achieves higher recall (from an average of 52.55% to 77.83%) and higher F1-score (from an average of 0.612 to 0.804) while maintaining precision (from an average of 86.67% to 85.12%) on real-world benchmarks such as Apache HTTPD and MbedTLS. We also conducted experiments to understand the sources of imprecision in our LLM-assisted analysis as well as the impact of LLM nondeterminism on the analysis results.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Miao, Dolores; Laguna, Ignacio; Georgakoudis, Giorgis; Parasyris, Konstantinos; Rubio-González, Cindy (, Parallel Computing)
-
Chapman, Patrick J; Rubio-González, Cindy; Thakur, Aditya V (, ACM)
-
Miao, Dolores; Laguna, Ignacio; Georgakoudis, Giorgis; Parasyris, Konstantinos; Rubio-González, Cindy (, ACM)
An official website of the United States government
