Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Knowledge-based entity prediction (KEP) is a novel task that aims to improve machine perception in autonomous systems. KEP leverages relational knowledge from heterogeneous sources in predicting potentially unrecognized entities. In this paper, we provide a formal definition of KEP as a knowledge completion task. Three potential solutions are then introduced, which employ several machine learning and data mining techniques. Finally, the applicability of KEP is demonstrated on two autonomous systems from different domains; namely, autonomous driving and smart manufacturing. We argue that in complex real-world systems, the use of KEP would significantly improve machine perception while pushing the current technology one step closer to achieving full autonomy. Keywords Autonomous Vehicles, Task Analysis, Semantics, Process Control, Planning, Data Mining, Accidents, Entity Prediction, Machine Perception, Autonomous Driving, Smart Manufacturing, Event Perception, Knowledge Infused Learningmore » « less
An official website of the United States government
