skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2119949

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Multicellular spheroids have shown great promise in 3D biology. Many techniques exist to form spheroids, but how cells take mechanical advantage of native fibrous extracellular matrix (ECM) to form spheroids remains unknown. Here, we identify the role of fiber diameter, architecture, and cell contractility on spheroids’ spontaneous formation and growth in ECM-mimicking fiber networks. We show that matrix deformability revealed through force measurements on aligned fiber networks promotes spheroid formation independent of fiber diameter. At the same time, larger-diameter crosshatched networks of low deformability abrogate spheroid formation. Thus, designing fiber networks of varying diameters and architectures allows spatial patterning of spheroids and monolayers simultaneously. Forces quantified during spheroid formation revealed the contractile role of Rho-associated protein kinase in spheroid formation and maintenance. Interestingly, we observed spheroid–spheroid and multiple spheroid mergers initiated by cell exchanges to form cellular bridges connecting the two spheroids. Unexpectedly, we found large pericyte spheroids contract rhythmically. Transcriptomic analysis revealed striking changes in cell–cell, cell–matrix, and mechanosensing gene expression profiles concordant with spheroid assembly on fiber networks. Overall, we ascertained that contractility and network deformability work together to spontaneously form and pattern 3D spheroids, potentially connecting in vivo matrix biology with developmental, disease, and regenerative biology. 
    more » « less
  2. Discher, Dennis (Ed.)
    Abstract Accurate positioning of the mitotic spindle within the rounded cell body is critical to physiological maintenance. Mitotic cells encounter confinement from neighboring cells or the extracellular matrix (ECM), which can cause rotation of mitotic spindles and tilting of the metaphase plate (MP). To understand the effect of confinement on mitosis by fibers (ECM confinement), we use flexible ECM-mimicking nanofibers that allow natural rounding of the cell body while confining it to differing levels. Rounded mitotic bodies are anchored in place by actin retraction fibers (RFs) originating from adhesions on fibers. We discover that the extent of confinement influences RF organization in 3D, forming triangular and band-like patterns on the cell cortex under low and high confinement, respectively. Our mechanistic analysis reveals that the patterning of RFs on the cell cortex is the primary driver of the MP rotation. A stochastic Monte Carlo simulation of the centrosome, chromosome, membrane interactions, and 3D arrangement of RFs recovers MP tilting trends observed experimentally. Under high ECM confinement, the fibers can mechanically pinch the cortex, causing the MP to have localized deformations at contact sites with fibers. Interestingly, high ECM confinement leads to low and high MP tilts, which we mechanistically show to depend upon the extent of cortical deformation, RF patterning, and MP position. We identify that cortical deformation and RFs work in tandem to limit MP tilt, while asymmetric positioning of MP leads to high tilts. Overall, we provide fundamental insights into how mitosis may proceed in ECM-confining microenvironments in vivo. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  3. Abstract Protrusions at the leading-edge of a cell play an important role in sensing the extracellular cues during cellular spreading and motility. Recent studies provided indications that these protrusions wrap (coil) around the extracellular fibers. However, the physics of this coiling process, and the mechanisms that drive it, are not well understood. We present a combined theoretical and experimental study of the coiling of cellular protrusions on fibers of different geometry. Our theoretical model describes membrane protrusions that are produced by curved membrane proteins that recruit the protrusive forces of actin polymerization, and identifies the role of bending and adhesion energies in orienting the leading-edges of the protrusions along the azimuthal (coiling) direction. Our model predicts that the cell’s leading-edge coils on fibers with circular cross-section (above some critical radius), but the coiling ceases for flattened fibers of highly elliptical cross-section. These predictions are verified by 3D visualization and quantitation of coiling on suspended fibers using Dual-View light-sheet microscopy (diSPIM). Overall, we provide a theoretical framework, supported by experiments, which explains the physical origin of the coiling phenomenon. 
    more » « less
  4. Abstract The cell migration cycle, well‐established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three‐dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell‐length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53‐depleted cells from rapid stick‐slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell‐length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D. 
    more » « less
  5. Polarized fluorescence microscopy is a valuable tool for measuring molecular orientations in biological samples, but techniques for recovering three-dimensional orientations and positions of fluorescent ensembles are limited. We report a polarized dual-view light-sheet system for determining the diffraction-limited three-dimensional distribution of the orientations and positions of ensembles of fluorescent dipoles that label biological structures. We share a set of visualization, histogram, and profiling tools for interpreting these positions and orientations. We model the distributions based on the polarization-dependent efficiency of excitation and detection of emitted fluorescence, using coarse-grained representations we call orientation distribution functions (ODFs). We apply ODFs to create physics-informed models of image formation with spatio-angular point-spread and transfer functions. We use theory and experiment to conclude that light-sheet tilting is a necessary part of our design for recovering all three-dimensional orientations. We use our system to extend known two-dimensional results to three dimensions in FM1-43-labeled giant unilamellar vesicles, fast-scarlet-labeled cellulose in xylem cells, and phalloidin-labeled actin in U2OS cells. Additionally, we observe phalloidin-labeled actin in mouse fibroblasts grown on grids of labeled nanowires and identify correlations between local actin alignment and global cell-scale orientation, indicating cellular coordination across length scales. 
    more » « less
  6. A high porosity (88%) and ultrathin (<3 μm) fibrous basement membrane mimic using (A) suspended nanofiber networks for a (B) brain endothelial–pericyte co-culture model. (C) Our approach achieved low cell membrane and nuclei separations. 
    more » « less
  7. During mitosis, cells round up and utilize the interphase adhesion sites within the fibrous extracellular matrix (ECM) as guidance cues to orient the mitotic spindles. Here, using suspended ECM-mimicking nanofiber networks, we explore mitotic outcomes and error distribution for various interphase cell shapes. Elongated cells attached to single fibers through two focal adhesion clusters (FACs) at their extremities result in perfect spherical mitotic cell bodies that undergo significant 3-dimensional (3D) displacement while being held by retraction fibers (RFs). Increasing the number of parallel fibers increases FACs and retraction fiber-driven stability, leading to reduced 3D cell body movement, metaphase plate rotations, increased interkinetochore distances, and significantly faster division times. Interestingly, interphase kite shapes on a crosshatch pattern of four fibers undergo mitosis resembling single-fiber outcomes due to rounded bodies being primarily held in position by RFs from two perpendicular suspended fibers. We develop a cortex–astral microtubule analytical model to capture the retraction fiber dependence of the metaphase plate rotations. We observe that reduced orientational stability, on single fibers, results in increased monopolar mitotic defects, while multipolar defects become dominant as the number of adhered fibers increases. We use a stochastic Monte Carlo simulation of centrosome, chromosome, and membrane interactions to explain the relationship between the observed propensity of monopolar and multipolar defects and the geometry of RFs. Overall, we establish that while bipolar mitosis is robust in fibrous environments, the nature of division errors in fibrous microenvironments is governed by interphase cell shapes and adhesion geometries. 
    more » « less
  8. Contact inhibition of locomotion (CIL), in which cells repolarize and move away from contact, is now established as a fundamental driving force in development, repair, and disease biology. Much of what we know of CIL stems from studies on two-dimensional (2D) substrates that do not provide an essential biophysical cue—the curvature of extracellular matrix fibers. We discover rules controlling outcomes of cell–cell collisions on suspended nanofibers and show them to be profoundly different from the stereotyped CIL behavior on 2D substrates. Two approaching cells attached to a single fiber do not repolarize upon contact but rather usually migrate past one another. Fiber geometry modulates this behavior; when cells attach to two fibers, reducing their freedom to reorient, only one cell repolarizes on contact, leading to the cell pair migrating as a single unit. CIL outcomes also change when one cell has recently divided and moves with high speed—cells more frequently walk past each other. Our computational model of CIL in fiber geometries reproduces the core qualitative results of the experiments robustly to model parameters. Our model shows that the increased speed of postdivision cells may be sufficient to explain their increased walk-past rate. We also identify cell–cell adhesion as a key mediator of collision outcomes. Our results suggest that characterizing cell–cell interactions on flat substrates, channels, or micropatterns is not sufficient to predict interactions in a matrix—the geometry of the fiber can generate entirely new behaviors. 
    more » « less