skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2120804

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Alpine tundra ecosystems are highly vulnerable to climate warming but are governed by local‐scale abiotic heterogeneity, which makes it difficult to predict tundra responses to environmental change. Although land models are typically implemented at global scales, they can be applied at local scales to address process‐based ecological questions. In this study, we ran ecosystem‐scale Community Land Model (CLM) simulations with a novel hillslope hydrology configuration to represent topographically heterogeneous alpine tundra vegetation across a moisture gradient at Niwot Ridge, Colorado, USA. We used local observations to evaluate our simulations and investigated the role of topography and aspect in mediating patterns of snow, productivity, soil moisture, and soil temperature, as well as the potential exposure to climate change across an alpine tundra hillslope. Overall, our simulations captured observed gradients in abiotic conditions and productivity among heterogeneous, hydrologically connected vegetation communities (moist, wet, and dry). We found that south facing aspects were characterized by reduced snowpack and drier and warmer soils in all communities. When we extended our simulations to the year 2100, we found that earlier snowmelt altered the timing of runoff, with cascading effects on soil moisture, productivity, and growing season length. However, these effects were not distributed equally across the tundra, highlighting potential vulnerabilities of alpine vegetation in dry, wind‐scoured, and south facing areas. Overall, our results demonstrate how land model outputs can be applied to advance process‐based understanding of climate change impacts on ecosystem function. 
    more » « less
  2. Abstract. Global change research demands a convergence among academic disciplines to understand complex changes in Earth system function. Limitations related to data usability and computing infrastructure, however, present barriers to effective use of the research tools needed for this cross-disciplinary collaboration. To address these barriers, we created a computational platform that pairs meteorological data and site-level ecosystem characterizations from the National Ecological Observatory Network (NEON) with the Community Terrestrial System Model (CTSM) that is developed with university partners at the National Center for Atmospheric Research (NCAR). This NCAR–NEON system features a simplified user interface that facilitates access to and use of NEON observations and NCAR models. We present preliminary results that compare observed NEON fluxes with CTSM simulations and describe how the collaboration between NCAR and NEON that can be used by the global change research community improves both the data and model. Beyond datasets and computing, the NCAR–NEON system includes tutorials and visualization tools that facilitate interaction with observational and model datasets and further enable opportunities for teaching and research. By expanding access to data, models, and computing, cyberinfrastructure tools like the NCAR–NEON system will accelerate integration across ecology and climate science disciplines to advance understanding in Earth system science and global change. 
    more » « less
  3. Climate change projections consistently demonstrate that warming temperatures and dwindling seasonal snowpack will elicit cascading effects on ecosystem function and water resource availability. Despite this consensus, little is known about potential changes in the variability of ecohydrological conditions, which is also required to inform climate change adaptation and mitigation strategies. Considering potential changes in ecohydrological variability is critical to evaluating the emergence of trends, assessing the likelihood of extreme events such as floods and droughts, and identifying when tipping points may be reached that fundamentally alter ecohydrological function. Using a single-model Large Ensemble with sophisticated terrestrial ecosystem representation, we characterize projected changes in the mean state and variability of ecohydrological processes in historically snow-dominated regions of the Northern Hemisphere. Widespread snowpack reductions, earlier snowmelt timing, longer growing seasons, drier soils, and increased fire risk are projected for this century under a high-emissions scenario. In addition to these changes in the mean state, increased variability in winter snowmelt will increase growing-season water deficits and increase the stochasticity of runoff. Thus, with warming, declining snowpack loses its dependable buffering capacity so that runoff quantity and timing more closely reflect the episodic characteristics of precipitation. This results in a declining predictability of annual runoff from maximum snow water equivalent, which has critical implications for ecosystem stress and water resource management. Our results suggest that there is a strong likelihood of pervasive alterations to ecohydrological function that may be expected with climate change. 
    more » « less