Peer review is useful for providing students with formative feedback, yet it is used less frequently in STEM classrooms and for supporting writing-to-learn (WTL). While research indicates the benefits of incorporating peer review into classrooms, less research is focused on students’ perceptions thereof. Such research is important as it speaks to the mechanisms whereby peer review can support learning. This study examines students’ self-reported approaches to and perceptions of peer review and revision associated with WTL assignments implemented in an organic chemistry course. Students responded to a survey covering how they approached peer review and revision and the benefits they perceived from participating in each. Findings indicate that the assignment materials guided students’ approaches during both peer review and revision. Furthermore, students described various ways both receiving feedback from their peers and reading their peers’ drafts were beneficial, but primarily connected their revisions to receiving feedback.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Student Experiences With Peer Review and Revision for Writing-to-Learn in a Chemistry Course Context
-
Lewis, Scott (Ed.)
Research on student learning in organic chemistry indicates that students tend to focus on surface level features of molecules with less consideration of implicit properties when engaging in mechanistic reasoning. Writing-to-learn (WTL) is one approach for supporting students’ mechanistic reasoning. A variation of WTL incorporates peer review and revision to provide opportunities for students to interact with and learn from their peers, as well as revisit and reflect on their own knowledge and reasoning. However, research indicates that the rhetorical features included in WTL assignments may influence the language students use in their responses. This study utilizes machine learning to characterize the mechanistic features present in second-semester undergraduate organic chemistry students’ responses to two versions of a WTL assignment with different rhetorical features. Furthermore, we examine the role of peer review on the mechanistic reasoning captured in students’ revised drafts. Our analysis indicates that students include both surface level and implicit features of mechanistic reasoning in their drafts and in the feedback to their peers, with slight differences depending on the rhetorical features present in the assignment. However, students’ revisions appeared to be primarily connected to the peer review process
via the presence of surface features in the drafts students read (as opposed to the feedback received). These findings indicate that further scaffolding focused on how to utilize information gained from the peer review process (i.e. , both feedback received and drafts read) and emphasizing implicit properties could help support the utility of WTL for developing students’ mechanistic reasoning in organic chemistry.Free, publicly-accessible full text available June 26, 2025 -
East, Martin ; Slomp, David (Ed.)Studies examining peer review demonstrate that students can learn from giving feedback to and receiving feedback from their peers, especially when they utilize information gained from the review process to revise. However, much of the research on peer review is situated within the literature regarding how students learn to write. With an increasing use of writing-to-learn in STEM classrooms, it is important to study how students engage in peer review for these types of writing assignments. This study sought to better understand how peer review and revision can support student learning for writing-to-learn specifically, using the lenses of cognitive perspectives of writing and engagement with written corrective feedback. Using a case study approach, we provide a detailed analysis of six students’ written artifacts in response to a writing-to-learn assignment that incorporated peer review and revision implemented in an organic chemistry course. Students demonstrated a range in the types of revisions they made and the extent to which the peer review process informed their revisions. Additionally, students exhibited surface, midlevel, and active engagement with the peer review and revision process. Considering the different engagement levels can inform how we frame peer review to students when using it as an instructional practice.more » « lessFree, publicly-accessible full text available January 1, 2025