Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In an ocean that is rapidly warming and losing oxygen, accurate forecasting of species’ responses must consider how this environmental change affects fundamental aspects of their physiology. Here, we develop an absolute metabolic index (Φ A ) that quantifies how ocean temperature, dissolved oxygen and organismal mass interact to constrain the total oxygen budget an organism can use to fuel sustainable levels of aerobic metabolism. We calibrate species-specific parameters of Φ A with physiological measurements for red abalone ( Haliotis rufescens ) and purple urchin ( Strongylocentrotus purpuratus ). Φ A models highlight that the temperature where oxygen supply is greatest shifts cooler when water loses oxygen or organisms grow larger, providing a mechanistic explanation for observed thermal preference patterns. Viable habitat forecasts are disproportionally deleterious for red abalone, revealing how species-specific physiologies modulate the intensity of a common climate signal, captured in the newly developed Φ A framework.more » « less
-
Abstract. The global ocean’s oxygen content has declined significantly over the past several decades and is expected to continue decreasing under global warming with far reaching impacts on marine ecosystems and biogeochemical cycling. Determining the oxygen trend, its spatial pattern and uncertainties from observations is fundamental to our understanding of20 the changing ocean environment. This study uses a suite of CMIP6 Earth System Models to evaluate the biases and uncertainties in oxygen distribution and trends due to sampling sparseness. Model outputs are sub-sampled according to the spatial and temporal distribution of the historical shipboard measurements, and an optimal interpolation method is applied to fill data gaps. Sub-sampled results are compared to full model output, revealing the biases in global and basin-wise oxygen content trends. The optimal interpolation underestimates the modeled global deoxygenation trends, capturing approximately25 two-thirds of the full model trends. North Atlantic and Subpolar North Pacific are relatively well sampled, and the optimal interpolation is capable of reconstructing more than 80% of the oxygen trend. In contrast, pronounced biases are found in the equatorial oceans and the Southern Ocean, where the sampling density is relatively low. Optimal interpolation of the historical dataset estimated the global oxygen loss of 1.5% over the past 50 years. However, the ratio of global oxygen trend between the subsampled and full model output, increases the estimated loss rate to 1.7 to 3.1% over the past 50 years, which partially30 overlaps with previous studies. The approach taken in this study can provide a framework for the intercomparison of different statistical gap-fill methods to estimate oxygen content trends and its uncertainties due to sampling sparseness.more » « less
-
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that “whitings” are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system.more » « less
An official website of the United States government

Full Text Available