skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122147

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The intersection of superconductivity and ferroelectricity hosts a wide range of exotic quantum phenomena. Here, we report on the observation of superconductivity in high-quality tin telluride films grown by molecular beam epitaxy. Unintentionally doped tin telluride undergoes a ferroelectric transition at ~100 K. The critical temperature of superconductivity increases monotonically with indium concentration. The critical field of superconductivity, however, does not follow the same behavior as critical temperature with indium concentration and exhibits a carrier-density-dependent violation of the Pauli limit. The electron–phonon coupling, according to the McMillan formula, exhibits a systematic enhancement with indium concentration, suggesting a potential violation of Bardeen–Cooper–Schrieffer (BCS) weak coupling at high indium concentrations. 
    more » « less
  2. 60 and 120 nm thick epitaxial films of isotopically enriched bcc iron (α-57Fe) grown on (100) MgO substrates are studied using x-ray diffraction, reflection high-energy electron diffraction (RHEED), and conversion electron Mössbauer spectroscopy (CEMS). X-ray diffraction and RHEED data indicate that each film behaves as a single crystal material consistent with the relative intensity ratios of the spectral lines observed in the CEMS spectrum. Data further confirm that the easy axis of magnetization lies along the ⟨100⟩ family of directions of the cubic α-iron film. The relevant theory to understand the relative intensities in a magnetic Mössbauer spectrum is outlined and is applied to interpret the intensity ratio of the Mössbauer spectral lines of a more complex hexaferrite magnetic system, BaFe12O19, grown on a single crystal substrate of Sr1.03Ga10.81Mg0.58Zr0.58O19. The conclusion that the magnetic moment in (0001)-oriented epitaxial BaFe12O19 film lies perpendicular to the plane of the substrate is deduced from the absence of the second and fifth lines by comparing the CEMS spectrum of the epitaxial (0001) BaFe12O19 film with the spectrum of a polycrystalline BaFe12O19 powder. Our measurements using CEMS corroborate what is known about the direction of the magnetic easy axis in α-iron and BaFe12O19 and motivate the use of CEMS to probe more complex atomically engineered epitaxial heterostructures, including superlattices. 
    more » « less
  3. The use of covalent organic frameworks (COFs) for hazardous radioiodine capture has been highly sought after recently. However, the synthesis of high-performance COF adsorbents while circumventing the limitations of traditional solvothermal methods remains largely unexplored. Herein, we for the first time combine microwave-assisted synthesis and mixed-linker strategy to fabricate multivariate COF adsorbents (X% OMe-TFB-BD COFs, X% = 0, 33, 50, 67, and 100 mol%) with varying ratios of benzidine (BD) and 3,3′-dimethoxylbenzidine (BD-OMe) linkers in a rapid and facile manner. Adjusting the BD-OMe/BD mole ratios has led to distinct variations in density, crystallinity, porosity, morphology, and thermal/chemical stability of the resultant COFs, which empowered fine-tuning of the adsorption performance towards static iodine vapor. Remarkably, the 50 % OMe-TFB-BD COF exhibited an ultrahigh iodine adsorption capability of 8.2 g g−1, surpassing those of single-component COFs, mixed-linker COFs with other methoxy content, physically blended mixtures, and most existing COF adsorbents. Moreover, 50 % OMe-TFB-BD COF was recyclable seven times without obvious loss in its adsorption capacity. This work underscores the substantial potential of microwave-assisted mixed-linker strategy as a viable approach for developing multivariate COFs with shortened reaction times, precisely tailored pore environment, and tunable sorption properties, which are of considerable promise for environmental remediation and other niche applications. 
    more » « less
  4. Delineated here is the first mechanochemical synthesis of covalent organic frameworks (COF) adsorbents that exhibited exceptional iodine adsorption capacities of 6.4–7.1 g g−1, surpassing those of most existing COFs. 
    more » « less
  5. Covalent organic framework (COF)-supported palladium catalysts have garnered enormous attention for cross-coupling reactions. However, the limited linkage types in COF hosts and their suboptimal catalytic performance have hindered their widespread implementation. Herein, we present the first study immobilizing palladium acetate onto a dioxin-linked COF (Pd/COF-318) through a facile solution impregnation approach. By virtue of its permanent porosity, accessible Pd sites arranged in periodic skeletons, and framework robustness, the resultant Pd/COF-318 exhibits exceptionally high activity and broad substrate scope for the Suzuki–Miyaura coupling reaction between aryl bromides and arylboronic acids at room temperature within an hour, rendering it among the most effective Pd/COF catalysts for Suzuki–Miyaura coupling reactions to date. Moreover, Pd/COF-318 demonstrates excellent recyclability, retaining high activity over five cycles without significant deactivation. The leaching test confirms the heterogeneity of the catalyst. This work uncovers the vast potential of dioxin-linked COFs as catalyst supports for highly active, selective, and durable organometallic catalysis. 
    more » « less
  6. Catalysis is ubiquitous in ∼90% of chemical manufacturing processes and contributes up to 35% of global GDP. Hence, the development of advanced catalytic systems is of utmost importance for academia, industry, and government. Covalent organic frameworks (COFs) are a rapidly emerging class of crystalline porous materials that precisely integrate organic monomer units into extended periodic networks, offering a propitious platform for heterogeneous catalysis due to salient structural merits of ultralow density, high crystallinity, permanent porosity, structural tunability, functional diversity, and synthetic versatility. The past decade has witnessed an upsurge of interest in COFs for heterogeneous catalysis and this trend is expected to continue. In this review, we briefly introduce COF chemistry concerning the design principles, growth mechanism, and cutting-edge advances in structural evolution, linkage chemistry, and facile synthesis. We then scrutinize four leading design strategies for COF catalysts, namely pristine COFs with catalytically active backbones, COFs as hosts for the inclusion of catalytic species, COF-based heterostructures, and COF-derived carbons for thermo-, photo-, and electrocatalysis. Next, we overview the most recent advances (mainly from 2020 to 2023) of COFs in heterogeneous catalysis, along with their fundamentals and advantages. Finally, we outline the current challenges and offer our perspectives on the future directions of COFs for heterogeneous catalysis. 
    more » « less
  7. Strain-engineering is a powerful means to tune the polar, structural, and electronic instabilities of incipient ferroelectrics. KTaO3 is near a polar instability and shows anisotropic superconductivity in electron-doped samples. Here, we demonstrate growth of high-quality KTaO3 thin films by molecular-beam epitaxy. Tantalum was provided by either a suboxide source emanating a TaO2 flux from Ta2O5 contained in a conventional effusion cell or an electron-beam-heated tantalum source. Excess potassium and a combination of ozone and oxygen (10% O3 + 90% O2) were simultaneously supplied with the TaO2 (or tantalum) molecular beams to grow the KTaO3 films. Laue fringes suggest that the films are smooth with an abrupt film/substrate interface. Cross-sectional scanning transmission electron microscopy does not show any extended defects and confirms that the films have an atomically abrupt interface with the substrate. Atomic force microscopy reveals atomic steps at the surface of the grown films. Reciprocal space mapping demonstrates that the films, when sufficiently thin, are coherently strained to the SrTiO3 (001) and GdScO3 (110) substrates. 
    more » « less
  8. The sp2 hybridized carbon allotropes such as fullerenes and graphene are scientifically and technologically significant because of their unique elastic and electronic properties. These properties make them useful in a wide variety of applications. Recently, experimentalists have synthesized sp-sp2 hybridized carbon tubular arrays of two-dimensional carbon films, referred to as graphdiyne. To explore the possible existence of an sp-sp2 hybridized one-dimensional carbon allotrope, we investigate graphdiyne nanotubes' structural and electronic properties using dispersion-corrected density functional theory calculations. Graphdiyne nanotubes display unique porous characteristics and remarkable stability, which may promote them as a novel class of carbon materials. 
    more » « less
  9. In this study, we synthesized carbyne by a simple chemical route and then this was coated on nickel foam. On this carbyne coated nickel foam, FeCo2O4 was grown by the solvothermal process to serve as a nanohybrid electrode for supercapacitor applications. This nanohybrid electrode has shown high specific capacitance due to the large surface area, high electrical conductivity and improved rate characteristics. The specific capacitance of FeCo2O4 @ Carbyne nanohybrid electrode was about 2584.8 Fg-1 at the current density of 3 Ag-1. Furthermore, the asymmetric supercapacitor device integrated with FeCo2O4 @ Carbyne and activated carbon (FeCo2O4 @ Carbyne || AC) shows better performance with an energy density of about 96.59 WhKg-1 at a high-power density of 2.25 kW kg-1 with a capacitance decay of about 14.52 % even at 5000 cycles. These outcomes provide a new approach for the development of supercapacitors with superior characteristics. 
    more » « less