skip to main content


Search for: All records

Award ID contains: 2122312

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Detailed radiative transfer simulations of kilonova spectra play an essential role in multimessenger astrophysics. Using the simulation results in parameter inference studies requires building a surrogate model from the simulation outputs to use in algorithms requiring sampling. In this work, we present kilonovanet, an implementation of conditional variational autoencoders (cVAEs) for the construction of surrogate models of kilonova spectra. This method can be trained on spectra directly, removing overhead time of pre-processing spectra, and greatly speeds up parameter inference time. We build surrogate models of three state-of-the-art kilonova simulation data sets and present in-depth surrogate error evaluation methods, which can in general be applied to any surrogate construction method. By creating synthetic photometric observations from the spectral surrogate, we perform parameter inference for the observed light-curve data of GW170817 and compare the results with previous analyses. Given the speed with which kilonovanet performs during parameter inference, it will serve as a useful tool in future gravitational wave observing runs to quickly analyse potential kilonova candidates. 
    more » « less
  2. Abstract On 2019 August 14 at 21:10:39 UTC, the LIGO/Virgo Collaboration (LVC) detected a possible neutron star–black hole merger (NSBH), the first ever identified. An extensive search for an optical counterpart of this event, designated GW190814, was undertaken using the Dark Energy Camera on the 4 m Victor M. Blanco Telescope at the Cerro Tololo Inter-American Observatory. Target of Opportunity interrupts were issued on eight separate nights to observe 11 candidates using the 4.1 m Southern Astrophysical Research (SOAR) telescope’s Goodman High Throughput Spectrograph in order to assess whether any of these transients was likely to be an optical counterpart of the possible NSBH merger. Here, we describe the process of observing with SOAR, the analysis of our spectra, our spectroscopic typing methodology, and our resultant conclusion that none of the candidates corresponded to the gravitational wave merger event but were all instead other transients. Finally, we describe the lessons learned from this effort. Application of these lessons will be critical for a successful community spectroscopic follow-up program for LVC observing run 4 (O4) and beyond. 
    more » « less
  3. Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg 2 for the 90th percentile best localization), covering a total of 51 deg 2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r -band decline rate of 0.68 mag day −1 , similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M > 0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. Doglioni, C. ; Kim, D. ; Stewart, G.A. ; Silvestris, L. ; Jackson, P. ; Kamleh, W. (Ed.)
    The DESGW group seeks to identify electromagnetic counterparts of gravitational wave events seen by the LIGO-VIRGO network, such as those expected from binary neutron star mergers or neutron star-black hole mergers. DESGW was active throughout the first two LIGO observing seasons, following up several binary black hole mergers and the first binary neutron star merger, GW170817. This work describes the modifications to the observing strategy generation and image processing pipeline between the second (ending in August 2017) and third (beginning in April 2019) LIGO observing seasons. The modifications include a more robust observing strategy generator, further parallelization of the image reduction software and difference imaging processing pipeline, data transfer streamlining, and a web page listing identified counterpart candidates that updates in real time. Taken together, the additional parallelization steps enable the identification of potential electromagnetic counterparts within fully calibrated search images in less than one hour, compared to the 3-5 hours it would typically take during the first two seasons. These performance improvements are critical to the entire EM follow-up community, as rapid identification (or rejection) of candidates enables detailed and rapid spectroscopic follow-up by multiple instruments, leading to more information about the environment immediately following such gravitational wave events. 
    more » « less