skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122399

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The dynamics of swimming bacteria depend on the properties of their habitat media. Recently it is shown that the motion of swimming bacteria dispersed directly in a non‐toxic water‐based lyotropic chromonic liquid crystal can be controlled by the director field of the liquid crystal. Here, we investigate whether the macroscopic polar order of a ferroelectric nematic liquid crystal (NF) can be recognized by bacteria B. Subtilis swimming in a water dispersion adjacent to a glassy NFfilm by surface interactions alone. Our results show that B. Subtilis tends to move in the direction antiparallel to the spontaneous electric polarization at the NFsurface. Their speed is found to be the same with or without a polar NFlayer. In contrast to observation on crystal ferroelectric films, the bacteria do not get immobilized. These observations may offer a pathway to creation of polar microinserts to direct bacterial motion in vivo. 
    more » « less
  2. AbstractAn oblique helicoidal state of a cholesteric liquid crystal (ChOH) is capable of continuous change of the pitch$$P$$ P in response to an applied electric field. Such a structure reflects 50% of the unpolarized light incident along the ChOHaxis in the electrically tunable band determined by$$P$$ P /2. Here, we demonstrate that at an oblique incidence of light, ChOHreflects 100% of light of any polarization. This singlet band of total reflection is associated with the full pitch$$P$$ P . We also describe the satellite$$P/2$$ P / 2 ,$$P/3$$ P / 3 , and$$P/4$$ P / 4 bands. The$$P/2$$ P / 2 and$$P/4$$ P / 4 bands are triplets, whereas$$P/3$$ P / 3 band is a singlet caused by multiple scatterings at$$P$$ P and$$P/2$$ P / 2 . A single ChOHcell acted upon by an electric field tunes all these bands in a very broad spectral range, from ultraviolet to infrared and beyond, thus representing a structural color device with enormous potential for optical and photonic applications. Impact statementPigments, inks, and dyes produce colors by partially consuming the energy of light. In contrast, structural colors caused by interference and diffraction of light scattered at submicrometer length scales do not involve energy losses, which explains their widespread in Nature and the interest of researchers to develop mimicking materials. The grand challenge is to produce materials in which the structural colors could be dynamically tuned. Among the oldest known materials producing structural colors are cholesteric liquid crystals. Light causes coloration by selective Bragg reflection at the periodic helicoidal structure formed by cholesteric molecules. The cholesteric pitch and thus the color can be altered by chemical composition or by temperature, but, unfortunately, dynamic tuning by electromagnetic field has been elusive. Here, we demonstrate that a cholesteric material in a new oblique helicoidal ChOHstate could produce total reflection of an obliquely incident light of any polarization. The material reflects 100% of light within a band that is continuously tunable by the electric field through the entire visible spectrum while preserving its maximum efficiency. Broad electric tunability of total reflection makes the ChOHmaterial suitable for applications in energy-saving smart windows, transparent displays, communications, lasers, multispectral imaging, and virtual and augmented reality. Graphical Abstract 
    more » « less
  3. Abstract Spontaneous electric polarization of solid ferroelectrics follows aligning directions of crystallographic axes. Domains of differently oriented polarization are separated by domain walls (DWs), which are predominantly flat and run along directions dictated by the bulk translational order and the sample surfaces. Here we explore DWs in a ferroelectric nematic (NF) liquid crystal, which is a fluid with polar long-range orientational order but no crystallographic axes nor facets. We demonstrate that DWs in the absence of bulk and surface aligning axes are shaped as conic sections. The conics bisect the angle between two neighboring polarization fields to avoid electric charges. The remarkable bisecting properties of conic sections, known for millennia, play a central role as intrinsic features of liquid ferroelectrics. The findings could be helpful in designing patterns of electric polarization and space charge. 
    more » « less
  4. Abstract Tunable optical lenses are in great demand in modern technologies ranging from augmented and virtual reality to sensing and detection. In this work, electrically tunable microlenses based on a polymer‐stabilized chiral ferroelectric nematic liquid crystal are described. The power of the lens can be quickly (within 5 ms) varied by ≈500 diopters by ramping an in‐plane electric field from 0 to 2.5 V µm−1. Importantly, within this relatively low‐amplitude field range, the lens is optically isotropic; thus, its focal length is independent of the polarization of incoming light. This remarkable performance combines the advantages of electrically tuned isotropic lenses and the field‐controlled shape of the lens, which are unique properties of chiral ferroelectric nematic liquid crystals and have no counterpart in other liquid crystals. The achieved lens performance represents a significant step forward as compared to liquid lenses controlled by electrowetting and opens new possibilities in various applications such as biomimetic optics, security printing, and solar energy concentration. 
    more » « less
  5. Nematic liquid crystals exhibit nanosecond electro-optic response to an applied electric field which modifies the degree of orientational order without realigning the molecular orientation. However, this nanosecond electrically modified order parameter (NEMOP) effect requires high driving fields, on the order of 108V/m for a modest birefringence change of 0.01. In this work, we demonstrate that a nematic phase of the recently discovered ferroelectric nematic materials exhibits a robust and fast electro-optic response. Namely, a relatively weak field of 2 × 107V/m changes the birefringence by ≈ 0.04 with field-on and-off times around 1 μs. This microsecond electrically modified order parameter (MEMOP) effect shows a greatly improved figure of merit when compared to other electro-optical switching modes in liquid crystals, including the conventional Frederiks effect, and has a potential for applications in fast electro-optical devices such as phase modulators, optical shutters, displays, and beam steerers. 
    more » « less
  6. Khoo, Iam Choon (Ed.)
    Nematic liquid crystals exhibit nanosecond electro-optic response to an applied electric field which modifies the degree of orientational order without realigning the molecular orientation. However, this nanosecond electrically-modified order parameter (NEMOP) effect requires high driving fields, on the order of 108 V/m for a modest birefringence change of 0.01. In this work, we demonstrate that a nematic phase of the recently discovered ferroelectric nematic materials exhibits a robust and fast electro-optic response. Namely, a relatively weak field of 2×107 V/m changes the birefringence by ≈ 0.04 with field-on and -off times around 1 μs. This microsecond electrically modified order parameter (MEMOP) effect shows a greatly improved figure of merit when compared to other electro-optical switching modes in liquid crystals, including the conventional Frederiks effect, and has a potential for applications in fast electro-optical devices such as phase modulators, optical shutters, displays, and beam steerers. 
    more » « less
  7. Ferroelectric nematic liquid crystals are formed by achiral molecules with large dipole moments. Their three-dimensional orientational order is described as unidirectionally polar. We demonstrate that the ground state of a flat slab of a ferroelectric nematic unconstrained by externally imposed alignment directions is chiral, with left- and right-handed twists of polarization. Although the helicoidal deformations and defect walls that separate domains of opposite handedness increase the elastic energy, the twists reduce the electrostatic energy and become weaker when the material is doped with ions. This work shows that the polar orientational order of molecules could trigger chirality in soft matter with no chemically induced chiral centers. 
    more » « less