skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2122785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Within the field of K-2 CS education, unplugged computational thinking (CT) activities have been suggested as beneficial for younger students and shown to impact young students’ skills and motivation to learn about CS. This study sought to examine how children demonstrate CT competencies in unplugged sequencing tasks and how children use manipulatives to solve unplugged sequencing tasks. This case study approach examined two unplugged sequencing tasks for six children ranging from ages four to seven (pre-kindergarten to 2nd grade). Children showed evidence of several CT competencies during the sequencing tasks: (1) pattern recognition, (2) algorithms and procedures, (3) problem decomposition, and (4) debugging. The strategies and use of manipulatives to showcase CT competencies seemed to evolve in complexity based on age and developmental levels. Taking into account children’s abilities to demonstrate CT competencies, this study suggests that sequencing is a developmentally appropriate entry point for young children to begin engaging in other CT competencies. In addition, these unplugged sequencing tasks can also be easily integrated into other activities commonly experienced in early childhood classrooms. 
    more » « less
    Free, publicly-accessible full text available May 27, 2025
  2. Cohen, J; Solano, G (Ed.)
    The integration of Computational Thinking (CT) into K-12 education has gained significance in recent years as the field of education experiences the need to equip students with essential skills for the 21st century. This case study focused on two sequencing activities, involving plugged and unplugged tasks, conducted with four children aged four to seven, spanning pre-kindergarten to second grade. The central research question guiding the study was: "What computational thinking (CT) skills were demonstrated by K-2 students as they engaged in two different sequencing tasks?" The study identified competencies in sequencing, reverse sequencing, debugging, pattern recognition, and problem decomposition. The findings suggest that both unplugged and plugged sequencing tasks provide age-appropriate entry points for young children to develop various CT competencies. Furthermore, the study highlights the potential for plugged and unplugged sequencing tasks to be integrated into early childhood classroom activities, offering a practical approach to promoting CT skills in young learners. 
    more » « less
  3. Students can begin to lose interest in CS as early as 2nd grade, indicating the importance of engaging students in CS as early as possible. This study examined the integration of computational thinking (CT) into literacy activities in early childhood education (K-2). We describe the co-design process of developing computational thinking literacy integrated curriculum for K-2, and preliminary results of K-2 student engagement in CT and literacy activities 
    more » « less