skip to main content


Search for: All records

Award ID contains: 2123318

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Whalen, Joann (Ed.)
    Abstract

    Residential landscapes are essential to the sustainability of large areas of the United States. However, spatial and temporal variation across multiple domains complicates developing policies to balance these systems’ environmental, economic, and equity dimensions. We conducted multidisciplinary studies in the Baltimore, MD, USA, metropolitan area to identify locations (hotspots) or times (hot moments) with a disproportionate influence on nitrogen export, a widespread environmental concern. Results showed high variation in the inherent vulnerability/sensitivity of individual parcels to cause environmental damage and in the knowledge and practices of individual managers. To the extent that hotspots are the result of management choices by homeowners, there are straightforward approaches to improve outcomes, e.g. fertilizer restrictions and incentives to reduce fertilizer use. If, however, hotspots arise from the configuration and inherent characteristics of parcels and neighborhoods, efforts to improve outcomes may involve more intensive and complex interventions, such as conversion to alternative ecosystem types.

     
    more » « less
    Free, publicly-accessible full text available September 29, 2024
  2. Abstract

    The idea of green infrastructure (GI) has generated great interest and creativity in addressing a range of challenging and expensive environmental problems, from coastal resilience to control of combined sewer overflows (CSOs). The appeal of GI stems from its cost savings compared to traditional “gray” infrastructure and the multiple benefits it provides, including biodiversity, aesthetics, and carbon sequestration. For example, a “green” approach to controlling CSOs in New York City saved $1.5 billion compared to a “gray” approach. Despite these advantages, GI still does not have detailed design and reliability specifications as compared to engineered gray infrastructure, potentially hindering its adoption. In this paper, we review some of the potential applications of GI in modern environmental science and discuss how reliability and associated (un)certainty in net benefits need to be addressed to realize the potential of this new approach.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.

     
    more » « less
  4. Abstract

    Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis‐St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn‐dominated yards with high or low fertilizer input, yards with water‐conserving features, and yards with wildlife‐friendly features. We measured ETinstin situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinstto estimate daily ET of the lawn (ETdaily) and multiplied ETdailyby the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdailyvaried from 0.9 ± 0.4 mm d1in mesic cities to 2.9 ± 0.7 mm d−1in arid cities. Neither ETinstnor ETdailywas significantly influenced by yard landscape types and ETinstpatterns indicated that lawns may be largely decoupled from regional rain‐driven climate patterns. ETvolranged from ∼0 L d−1to over 2,000 L d−1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinstor ETdailyamong traditional, water‐conserving, or wildlife‐friendly yards, but smaller lawn areas in water‐conserving and wildlife‐friendly yards resulted in lower ETvol.

     
    more » « less
  5. Free, publicly-accessible full text available November 16, 2024
  6. Free, publicly-accessible full text available October 23, 2024
  7. Free, publicly-accessible full text available May 25, 2024
  8. Free, publicly-accessible full text available May 1, 2024
  9. The relationship between (a) the structure and composition of the landscape around an individual's home and (b) environmental perceptions and health outcomes has been well demonstrated (eg the value of vegetation cover to well‐being). Few studies, however, have examined how multiple landscape features (eg vegetation and water cover) relate to perceptions of multiple environmental problems (eg air or water quality) and whether those relationships hold over time. We utilized a long‐term dataset of geolocated telephone surveys in Baltimore, Maryland, to identify relationships between residents’ perceptions of environmental problems and nearby landcover. Residents of neighborhoods with more vegetation or located closer to water were less likely to perceive environmental problems. Water quality was one exception to this trend, in that people were more likely to perceive water‐quality problems when nearby water cover was greater. These trends endured over time, suggesting that these relationships are stable and therefore useful for informing policy aimed at minimizing perceived environmental problems.

     
    more » « less