skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2123404

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Earth's lower atmosphere is a vital ecological habitat, home to trillions of organisms that live, forage, and migrate through this medium. Despite its importance, this space is seldom considered a primary habitat for ecological or conservation prioritization, making it one of the least studied environments. However, it plays a crucial role as a global conduit for the transfer of biomass, weather, and inorganic materials. Fundamental research is essential to address core ecological questions related to the ecological consequences of this habitat's intricate spatial and temporal structure. To advance our understanding of airspace use by migratory animals, we analyzed over 108 million 5‐min radar observations from 143 NEXRAD sites, focusing on 24‐h diel cycles across the contiguous United States. This extensive dataset, spanning from 1995 to 2022, allowed us to quantify aerial space use by systematically identifying peak activity times, the portion of the airspace that contained the majority of migration activity, and the percentage of migrants passing across diurnal and nocturnal diel cycles. We found that airspace is used predominantly during nocturnal periods in both spring and autumn (88%), while summer exhibited a more balanced distribution (54% nocturnal). Additionally, the percentage of nocturnal activity increased with latitude in spring and autumn but decreased in summer. Peak aerial activity typically occurred about 4 h after local sunset in both spring and autumn, with variations based on latitude and longitude. During these peak times, on average, half of the aerial movement was confined within a vertical band of 516 meters, starting around 355 m above ground level. Our research underscores the need to view the lower atmosphere as a structured habitat with significant ecological importance. 
    more » « less
    Free, publicly-accessible full text available November 1, 2026
  2. Abstract Our ability to forecast the spatial and temporal patterns of ecological processes at continental scales has drastically improved over the past decade. Yet, predicting ecological patterns at broad scales while capturing fine-scale processes is a central challenge of ecological forecasting given the inherent tension between grain and extent, whereby enhancing one often diminishes the other. We leveraged 10 years of terrestrial and atmospheric data (2012–2021) to develop a high-resolution (2.9 × 2.9 km), radar-driven bird migration forecast model for a highly active region of the Mississippi flyway. Based on the suite of candidate models we examined, adding terrestrial predictors improved model performance only marginally, whereas spatially distant atmospheric predictors, particularly air temperature and wind speed from focal and distant regions, were major contributors to our top model, explaining 56% of variation in regional migration activity. Among terrestrial predictors, which ranked considerably lower than atmospheric predictors in terms of variable importance, vegetation phenology, artificial light at night, and percent of forest cover were the most important predictors. Furthermore, we scale this model to demonstrate the capacity to generate real-time, high-resolution forecasts for the continental United States that explained up to 65% of national variation. Our study demonstrates an approach for increasing the resolution of migration forecasts, which could facilitate the integration of radar with other data sources and inform dynamic conservation efforts at a local scale that is more relevant to threats, such as anthropogenic light at night. 
    more » « less
  3. Abstract AimTwo important environmental hazards for nocturnally migrating birds are artificial light at night (ALAN) and air pollution, with ambient fine particulate matter (PM2.5) considered to be especially harmful. Nocturnally migrating birds are attracted to ALAN during seasonal migration, which could increase exposure to PM2.5. Here, we examine PM2.5concentrations and PM2.5trends and the spatial correlation between ALAN and PM2.5within the geographical ranges of the world’s nocturnally migrating birds. LocationGlobal. Time period1998–2018. Major taxa studiedNocturnally migrating birds. MethodsWe intersected a global database of annual mean PM2.5concentrations over a 21‐year period (1998–2018) with the geographical ranges (breeding, non‐breeding and regions of passage) of 225 nocturnally migrating bird species in three migration flyways (Americas,n = 143; Africa–Europe,n = 36; and East Asia–Australia,n = 46). For each species, we estimated PM2.5concentrations and trends and measured the correlation between ALAN and PM2.5, which we summarized by season and flyway. ResultsCorrelations between ALAN and PM2.5were significantly positive across all seasons and flyways. The East Asia–Australia flyway had the strongest ALAN–PM2.5correlations within regions of passage, the highest PM2.5concentrations across all three seasons and the strongest positive PM2.5trends on the non‐breeding grounds and within regions of passage. The Americas flyway had the strongest negative air pollution trends on the non‐breeding grounds and within regions of passage. The breeding grounds had similarly negative air pollution trends within the three flyways. Main conclusionsThe combined threats of ALAN and air pollution are greatest and likely to be increasing within the East Asia–Australia flyway and lowest and likely to be decreasing within the Americas and Africa–Europe flyways. Reversing PM2.5trends in the East Asia–Australia flyway and maintaining negative PM2.5trends in the Americas and Africa–Europe flyways while reducing ALAN levels would likely be beneficial for the nocturnally migrating bird populations in each region. 
    more » « less