skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2123725

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Outside of the laboratory, animals behave in spaces where they can transition between open areas and coverage as they interact with others. Replicating these conditions in the laboratory can be difficult to control and record. This has led to a dominance of relatively simple, static behavioral paradigms that reduce the ethological relevance of behaviors and may alter the engagement of cognitive processes such as planning and decision-making. Therefore, we developed a method for controllable, repeatable interactions with others in a reconfigurable space. Mice navigate a large honeycomb lattice of adjustable obstacles as they interact with an autonomous robot coupled to their actions. We illustrate the system using the robot as a pseudopredator, delivering airpuffs to the mice. The combination of obstacles and a mobile threat elicits a diverse set of behaviors, such as increased path diversity, peeking, and baiting, providing a method to explore ethologically relevant behaviors in the laboratory. 
    more » « less
  2. Terrestrial vertebrates blink, but most aquatic vertebrates do not. How and why did blinking evolve? A recent study looks at this through the eyes of a mudskipper, fish that stay on land for long periods and blink. 
    more » « less
  3. The water-to-land transition in vertebrate evolution offers an unusual opportunity to consider computational affordances of a new ecology for the brain. All sensory modalities are changed, particularly a greatly enlarged visual sensorium owing to air versus water as a medium, and expanded by mobile eyes and neck. The multiplication of limbs, as evolved to exploit aspects of life on land, is a comparable computational challenge. As the total mass of living organisms on land is a hundredfold larger than the mass underwater, computational improvements promise great rewards. In water, the midbrain tectum coordinates approach/avoid decisions, contextualized by water flow and by the animal’s body state and learning. On land, the relative motions of sensory surfaces and effectors must be resolved, adding on computational architectures from the dorsal pallium, such as the parietal cortex. For the large-brained and long-living denizens of land, making the right decision when the wrong one means death may be the basis of planning, which allows animals to learn from hypothetical experience before enactment. Integration of value-weighted, memorized panoramas in basal ganglia/frontal cortex circuitry, with allocentric cognitive maps of the hippocampus and its associated cortices becomes a cognitive habit-to-plan transition as substantial as the change in ecology. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’. 
    more » « less