Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
BackgroundReliable and specific biomarkers that can distinguish autism spectrum disorders (ASDs) from commonly co-occurring attention-deficit/hyperactivity disorder (ADHD) are lacking, causing misses and delays in diagnosis, and reducing access to interventions and quality of life. AimsTo examine whether an innovative, brief (1-min), videogame method called Computerised Assessment of Motor Imitation (CAMI), can identify ASD-specific imitation differences compared with neurotypical children and children with ADHD. MethodThis cross-sectional study used CAMI alongside standardised parent-report (Social Responsiveness Scale, Second Edition) and observational measures of autism (Autism Diagnostic Observation Schedule-Second Edition; ADOS-2), ADHD (Conners) and motor ability (Physical and Neurological Examination for Soft Signs). The sample comprised 183 children aged 7–13 years, with ADHD (without ASD), with ASD (with and without ADHD) and who were neurotypical. ResultsRegardless of co-occurring ADHD, children with ASD showed poorer CAMI performance than neurotypical children (P< 0.0001; adjustedR2= 0.28), whereas children with ADHD and neurotypical children showed similar CAMI performance. Receiver operating curve and support vector machine analyses showed that CAMI distinguishes ASD from both neurotypical children (80% true positive rate) and children with ADHD (70% true positive rate), with a high success rate significantly above chance. Among children with ASD, poor CAMI performance was associated with increased autism traits, particularly ADOS-2 measures of social affect and restricted and repetitive behaviours (adjustedR2= 0.23), but not with ADHD traits or motor ability. ConclusionsFour levels of analyses confirm that poor imitation measured by the low-cost and scalable CAMI method specifically distinguishes ASD not only from neurotypical development, but also from commonly co-occurring ADHD.more » « lessFree, publicly-accessible full text available January 28, 2026
-
While Convolutional Neural Networks (CNNs) have been widely successful in 2D human pose estimation, Vision Transformers (ViTs) have emerged as a promising alternative to CNNs, boosting state-of-the-art performance. However, the quadratic computational complexity of ViTs has limited their applicability for processing high-resolution images. In this paper, we propose three methods for reducing ViT’s computational complexity, which are based on selecting and processing a small number of most informative patches while disregarding others. The first two methods leverage a lightweight pose estimation network to guide the patch selection process, while the third method utilizes a set of learnable joint tokens to ensure that the selected patches contain the most important information about body joints. Experiments across six benchmarks show that our proposed methods achieve a significant reduction in computational complexity, ranging from 30% to 44%, with only a minimal drop in accuracy between 0% and 3.5%.more » « less
An official website of the United States government

Full Text Available