Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings.more » « less
- 
            Bistability in the current–voltage characteristics of semiconductor superlattices and quantum cascade laser structures has the potential for wide-ranging applications, particularly in sensing systems. However, the interdependency of applied bias and current injection in conventional two-terminal structures has led to complications in analysis and rendered the bistability phenomenon difficult to implement in practical applications. Here, we report a new kind of electronic bistability coupled to optical switching in a resonant tunneling bipolar superlattice transistor. This bistability manifests as sharp discontinuities in the collector current with extremely small variations of the applied voltage, which arise from unstable tunneling transmission across the hetero-barrier between the two-dimensional electron gas (2DEG) at the edge of the transistor base and the collector superlattice structure. The electronic transitions between high and low quantum mechanical transmissions are demonstrated to be caused by self-consistent variations of the internal electric field at the heterointerface between the 2DEG and the superlattice. They are also present in the base current of the three-terminal device and result in sharp switching of near-infrared spontaneous light emission output from an interband radiative recombination process with a peak emission wavelength of 1.58 μm. A comprehensive quantum mechanical theoretical model accounting for the self-consistent bistable tunneling transmission is in quantitative agreement with the experimental data. The measured peak transconductance sensitivity value of 6000 mS can be used in the highly sensitive detector and non-linear device applications.more » « less
- 
            Chakrabarti, Satyajit; Paul, Rajashree (Ed.)Ultrasonic welding machines play a critical role in the lithium battery industry, facilitating the bonding of batteries with conductors. Ensuring high-quality welding is vital, making tool condition monitoring systems essential for early-stage quality control. However, existing monitoring methods face challenges in cost, downtime, and adaptability. In this paper, we present WeldMon, an affordable ultrasonic welding machine condition monitoring system that utilizes a custom data acquisition system and a data analysis pipeline designed for real-time analysis. Our classification algorithm combines auto-generated features and hand-crafted features, achieving superior cross-validation accuracy (95.8% on average over all testing tasks) compared to the state-of-the-art method (92.5%) in condition classification tasks. Our data augmentation approach alleviates the dataset shift problem, enhancing tool condition classification accuracy by 8.3%. All algorithms run locally, requiring only 385 milliseconds to process data for each welding cycle. We deploy WeldMon and a commercial system on an actual ultrasonic welding machine, performing a comprehensive comparison. Our findings highlight the potential for developing cost-effective, high-performance, and reliable tool condition monitoring systems.more » « less
- 
            Sensory IoT (Internet of Things) networks are widely applied and studied in recent years and have demonstrated their unique benefits in various areas. In this paper, we bring the sensor network to an application scenario that has rarely been studied - the academic cleanrooms. We design SENSELET++, a low-cost IoT sensing platform that can collect, manage and analyze a large amount of sensory data from heterogeneous sensors. Furthermore, we design a novel hybrid anomaly detection framework which can detect both time-critical and complex non-critical anomalies. We validate SENSELET++ through the deployment of the sensing platform in a lithography cleanroom. Our results show the scalability, flexibility, and reliability properties of the system design. Also, using real-world sensory data collected by SENSELET++, our system can analyze data streams in real-time and detect shape and trend anomalies with a 91% true positive rate.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
