Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bacterial motility is strongly influenced by confinement. Here, we derive an asymptotic solution for the flow about a microswimmer enclosed in a weakly deformable Hele-Shaw drop—a drop sandwiched between two solid planes. For a microswimmer modelled as a dipole, we explore the swimmer’s trajectory, the evolution of the droplet interface and the drop velocity. The results show that at steady state, the dipole induces droplet translation with a velocity independent of the dipole location and in the same direction as the dipole orientation. The trajectory of the swimming dipole is significantly affected by droplet deformability. This article is part of the theme issue ‘Biological fluid dynamics: emerging directions’.more » « lessFree, publicly-accessible full text available September 11, 2026
-
Nonlinear electrokinetic phenomena, where electrically driven fluid flows depend nonlinearly on the applied voltage, are commonly encountered in aqueous suspensions of colloidal particles. A prime example is the induced-charge electro-osmosis, driven by an electric field acting on diffuse charge induced near a polarizable surface. Nonlinear electrohydrodynamic flows also occur in non-polar fluids, driven by the electric field acting on space charge induced by conductivity gradients. Here, we analyse the flows about a charge-neutral spherical solid particle in an applied uniform electric field that arise from conductivity dependence on local field intensity. The flow pattern varies with particle conductivity: while the flow about a conducting particle has a quadrupolar pattern similar to induced-charge electro-osmosis, albeit with opposite direction, the flow about an insulating particle has a more complex structure. We find that this flow induces a force on a particle near an electrode that varies non-trivially with particle conductivity: while it is repulsive for perfectly insulating particles and particles more conductive than the suspending medium, there exists a range of particle conductivities where the force is attractive. The force decays as the inverse square of the distance to the electrode and thus can dominate the dielectrophoretic attraction due to the image dipole, which falls off with the fourth power with the distance. This electrohydrodynamic lift opens new possibilities for colloidal manipulation and driven assembly by electric fields.more » « lessFree, publicly-accessible full text available December 10, 2025
-
An isolated charge-neutral droplet in a uniform electric field experiences no net force. However, a droplet pair can move in response to field-induced dipolar and hydrodynamic interactions. If the droplets are identical, the centre of mass of the pair remains fixed. Here, we show that if the droplets have different properties, the pair experiences a net motion due to non-reciprocal electrohydrodynamic interactions. We analyse the three-dimensional droplet trajectories using asymptotic theory, assuming spherical droplets and large separations, and numerical simulations based on a boundary integral method. The dynamics can be quite intricate depending on the initial orientation of the droplets line-of-centres relative to the applied field direction. Drops tend to migrate towards a configuration with line-of-centres either parallel or perpendicular to the applied field direction, while either coming into contact or indefinitely separating. We elucidate the conditions under which these different interaction scenarios take place. Intriguingly, we find that in some cases droplets can form a pair (tandem) that translates either parallel or perpendicular to the applied field direction.more » « less
An official website of the United States government
