Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Arctic rodents influence tundra plant communities by altering species diversity, structure, and nutrient dynamics. These dynamics are intensified during rodent population peaks. Plants are known to induce defenses in response to rodent herbivory. However, changes in plant tissue digestibility may also play a role in deterring rodents or impacting their survival. This study presents a first look at the impacts of rodent herbivory on crude protein (CP) and acid detergent fiber (ADF) of three of the most common graminoid species (Calamagrostis sp.,Carex nigraandDeschampsia cespitosa) in the tundra meadows of the Varanger Peninsula, Norway. We selected 32 experimental plots representing both rodent-disturbed and adjacent, undisturbed control graminoid patches. During a rodent population peak, the disturbed plots had higher ADF (28.5%) values than less disturbed ones (26.6%), controlling for plant species. We also found differences between species, withCarex nigrahaving the lowest fiber content (24.3%, ADF) and highest protein content (18.2% CP) – making it the most palatable species. These results show that rodent activity can potentially alter plant food quality, suggesting that increased fiber content may be a defensive adaptation against herbivory.more » « less
-
Abstract Science, engineering, and society increasingly require integrative thinking about emerging problems in complex systems, a notion referred to as convergence science. Due to the concurrent pressures of two main stressors—rapid climate change and industrialization, Arctic research demands such a paradigm of scientific inquiry. This perspective represents a synthesis of a vision for its application in Arctic system studies, developed by a group of disciplinary experts consisting of social and earth system scientists, ecologists, and engineers. Our objective is to demonstrate how convergence research questions can be developed via a holistic view of system interactions that are then parsed into material links and concrete inquiries of disciplinary and interdisciplinary nature. We illustrate the application of the convergence science paradigm to several forms of Arctic stressors using the Yamal Peninsula of the Russian Arctic as a representative natural laboratory with a biogeographic gradient from the forest‐tundra ecotone to the high Arctic.more » « less
-
Increased human presence in the Arctic may affect its vulnerable ecosystems. Effects on arctic and red foxes provide notable examples. Both have been documented to take anthropogenic subsidies when available, which can change diet and ranging patterns in complex ways that can either benefit or harm populations, depending on the situation. Understanding this complexity requires new tools to study impacts of increasing human presence on endemic mammals at high latitudes. We propose that dental ecology, specifically tooth wear and breakage, can offer important clues. Based on samples of arctic foxes ( Vulpes lagopus (Linnaeus, 1758)) trapped prior to ( n = 78) and following ( n = 57) rapidly growing human presence on the Yamal Peninsula, Russia, we found that foxes trapped recently in proximity to human settlement had significantly less tooth wear and breakage. This is likely explained by a dietary shift from consumption of reindeer ( Rangifer tarandus (Linnaeus, 1758)) carcasses including bone to softer human-derived foods, especially when preferred smaller prey (e.g., West Siberian lemmings, Lemmus sibiricus (Kerr, 1792), and arctic lemmings, Dicrostonyx torquatus (Pallas, 1778)) are unavailable. These results suggest that tooth wear and breakage can be a useful indicator of the consumption of anthropogenic foods by arctic foxes.more » « less
An official website of the United States government
