skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127071

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An isolated source of surface buoyancy, be it a campfire or burning city, gives rise to a turbulent plume. Well above the surface, the plume properties asymptote to the well-known solutions of Morton, Taylor, and Turner (MTT), but a closure is still lacking for the virtual origin. A closure for the virtual origin is sought here in the case of a turbulent plume sustained by a circular source of surface buoyancy in an unstratified and unsheared fluid. In the high-Reynolds-number limit, it is argued that all such plumes asymptote to a single solution. Direct numerical simulation (DNS) of this solution exhibits a virtual origin located a distance below the surface equal to 1.1 times the radius of the buoyancy source. This solution is compared to the previously used assumption that the MTT plume is fully spun up at the surface, and that assumption is found to give buoyancies that are off by an order of magnitude. With regards to the citywide firestorm triggered by the nuclear attack on Hiroshima, it is found that the spun-up-at-surface MTT solution would have trapped radioactive soot within about a hundred meters of the surface, whereas the DNS solution presented here corroborates observations of the plume reaching well into the troposphere. 
    more » « less