skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2127195

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Eclogite thermobarometry is crucial for constraining the depths and temperatures to which oceanic and continental crust subduct. However, obtaining the pressure and temperature (P–T) conditions of eclogites is complex as they commonly display high‐variance mineral assemblages, and the mineral compositions only vary slightly withP–T. In this contribution, we present a comparison between two independent and commonly used thermobarometric approaches for eclogites: conventional thermobarometry and forward phase‐equilibrium modelling. We assess how consistent the thermobarometric calculations are using the garnet–clinopyroxene–phengite barometer and garnet–clinopyroxene thermometer with predictions from forward modelling (i.e. comparing the relative differences between approaches). Our results show that the overall mismatch in methods is typically ±0.2–0.3 GPa and ±29–42°C although differences as large as 80°C and 0.7 GPa are possible for a few narrow ranges ofP–Tconditions in the forward models. Such mismatch is interpreted as the relative differences among methods, and not as absolute uncertainties or accuracies for either method. For most of the investigatedP–Tconditions, the relatively minor differences between methods means that the choice in thermobarometric method itself is less important for geological interpretation than careful sample characterization and petrographic interpretation for derivingP–Tfrom eclogites. Although thermobarometry is known to be sensitive to the assumedXFe3+of a rock (or mineral), therelativedifferences between methods are not particularly sensitive to the choice of bulk‐rockXFe3+, except at high temperatures (>650°C, amphibole absent) and for very large differences in assumedXFe3+(0–0.5). We find that the most important difference between approaches is the activity–composition (a–x) relations, as opposed to the end‐member thermodynamic data or other aspects of experimental calibration. When equivalenta–xrelations are used in the conventional barometer,Pcalculations are nearly identical to phase‐equilibrium models (ΔP < 0.1). To further assess the implications of these results for real rocks, we also evaluate common mathematical optimizations of reaction constants used for obtaining the maximumP–Twith conventional thermobarometric approaches (e.g. using the highestaGrs2 × aPrp in garnet and Si content in phengite, and the lowestaDi in clinopyroxene). These approaches should be used with caution, because they may not represent the compositions of equilibrium mineral assemblages at eclogite facies conditions and therefore systematically biasP–Tcalculations. Assuming method accuracy, geological meaningfulPmaxat a typical eclogite facies temperature of ~660°C will be obtained by using the greatestaDi,aCel, andaPrp and lowestaGrs andaMs; garnet and clinopyroxene with the lowest Fe2+/Mg ratios may yield geological meaningfulTmaxat a typical eclogite facies pressure of 2.5 GPa. 
    more » « less