Tween 20 is frequently added to particle suspensions for reducing the particle–wall adhesion and particle–particle aggregation in microfluidic devices. However, the influences of Tween 20 on the fluid and particle behaviors have been largely ignored. We present in this work the first experimental study of the effects of Tween 20 addition on the electrokinetic transport of fluids and particles in a polydimethylsiloxane microchannel. We find that adding 0.1% v/v Tween 20 to a buffer solution can significantly reduce the electroosmotic mobility as well as the electrokinetic and electrophoretic mobilities of polystyrene particles and yeast cells. Further increasing the Tween 20 concentration within the range typically used in microfluidic applications continues reducing these mobility values, but at a smaller rate. Our finding suggests that Tween 20 should be used with care in electrokinetic microdevices when the flow rate or particle/cell throughput is an important parameter.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available March 21, 2025 -
Abstract Nonlinear electrophoresis offers advantageous prospects in microfluidic manipulation of particles over linear electrophoresis. Existing theories established for this phenomenon are entirely based on spherical particle models, some of which have been experimentally verified. However, there is no knowledge on if and how the particle shape may affect the nonlinear electrophoretic behavior. This work presents an experimental study of the nonlinear electrophoretic velocities of rigid peanut‐ and pear‐shaped particles in a rectangular microchannel, which are compared with rigid spherical particles of similar diameter and surface charge in terms of the particle slenderness. We observe a decrease in the nonlinear electrophoretic mobility, whereas an increase in the nonlinear index of electric field when the particle slenderness increases from the peanut‐ to pear‐shaped and spherical particles. The values of the nonlinear index for the nonspherical particles are, however, still within the theoretically predicted range for spherical particles. We also observe an enhanced nonlinear electrophoretic behavior in a lower concentration buffer solution regardless of the particle shape.
-
Abstract In classical electrokinetics, the electrophoretic velocity of a dielectric particle is a linear function of the applied electric field. Theoretical studies have predicted the onset of nonlinear electrophoresis at high electric fields because of the nonuniform surface conduction over the curved particle. However, experimental studies have been left behind and are insufficient for a fundamental understanding of the parametric effects on nonlinear electrophoresis. We present in this work a systematic experimental study of the effects of buffer concentration, particle size, and particle zeta potential on the electrophoretic velocity of polystyrene particles in a straight rectangular microchannel for electric fields of up to 3 kV/cm. The measured nonlinear electrophoretic particle velocity is found to exhibit a 2(±0.5)‐order dependence on the applied electric field, which appears to be within the theoretically predicted 3‐ and 3/2‐order dependences for low and high electric fields, respectively. Moreover, the obtained nonlinear electrophoretic particle mobility increases with decreasing buffer concentration (for the same particle) and particle size (for particles with similar zeta potentials) or increasing particle zeta potential (for particles with similar sizes). These observations are all consistent with the theoretical predictions for high electric fields.
-
Microfluidic manipulation of particles usually relies on their cross-stream migration. A center- or wall-directed motion has been reported for particles leading or lagging the Poiseuille flow of viscoelastic polyethylene oxide (PEO) solution via positive or negative electrophoresis. Such electro-elastic migration is exactly opposite to the electro-inertial migration of particles in a Newtonian fluid flow. We demonstrate here through the top- and side-view imaging that the leading and lagging particles in the electro-hydrodynamic flow of PEO solution migrate toward the centerline and corners of a rectangular microchannel, respectively. Each of these electro-elastic particle migrations is reduced in the PEO solution with shorter polymers though neither of them exhibits a strong dependence on the particle size. Both phenomena can be reasonably explained by the theory in terms of the ratios of the forces involved in the process. Decreasing the PEO concentration causes the particle migration to shift from the viscoelastic mode to the Newtonian mode, for which the magnitude of the imposed electric field is found to play an important role.