- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Harkess, Alex (2)
-
Leebens-Mack, Jim (2)
-
Bentz, Philip C (1)
-
Carey, Sarah B (1)
-
Carey, Sarah B. (1)
-
Hale, Haley (1)
-
Jenkins, Jerry (1)
-
Lovell, John T. (1)
-
Mercati, Francesco (1)
-
Ricciardi, Valentina (1)
-
Schmutz, Jeremy (1)
-
Sunseri, Francesco (1)
-
Wilson, Melissa A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The relatively young and repeated evolutionary origins of dioecy (separate sexes) in flowering plants enable investigation of molecular dynamics occurring at the earliest stages of sex chromosome evolution. With two independently young origins of dioecy in the genus,Asparagusis a model taxon for studying genetic sex-determination and sex chromosome evolution. Dioecy first evolved inAsparagus~3-4 million years ago (Ma) in the ancestor of a now widespread Eurasian clade that includes garden asparagus (Asparagus officinalis), while the second origin occurred in a smaller, geographically restricted, Mediterranean Basin clade includingAsparagus horridus. The XY sex chromosomes and sex-determination genes in garden asparagus have been well characterized, but the genetics underlying dioecy in the Mediterranean Basin clade are unknown. We generated new haplotype-resolved reference genomes for garden asparagus andA. horridus, to elucidate the sex chromosomes ofA. horridusand explore how dioecy evolved between these two closely related lineages. Analysis of theA. horridusgenome revealed an independently evolved XY system derived from different ancestral autosomes (chromosome 3) with different sex-determining genes than documented for garden asparagus (on chromosome 1). We estimate that proto-XY chromosomes evolved around 1-2 Ma in the Mediterranean Basin clade, following an ~2.1-megabase inversion between the ancestral pair. Recombination suppression and LTR retrotransposon accumulation drove the establishment and expansion of the Y-linked sex-determination region (Y-SDR) that now reaches ~9.6-megabases inA. horridus. The new garden asparagus genome revealed a Y-SDR that spans ~1.9-megabases with ten hemizygous genes. Our results evoke hemizygosity as the most probable mechanism responsible for the origin of proto-XY recombination suppression in the Eurasian clade, and that neofunctionalization of one duplicated gene (SOFF) drove the origin of dioecy. These findings support previous inference based on phylogeographic analysis revealing two recent origins of dioecy inAsparagus. Moreover, this work implicates alternative molecular mechanisms for two separate shifts to dioecy in a model taxon important for investigating young sex chromosome evolution.more » « lessFree, publicly-accessible full text available September 10, 2026
-
Carey, Sarah B.; Lovell, John T.; Jenkins, Jerry; Leebens-Mack, Jim; Schmutz, Jeremy; Wilson, Melissa A.; Harkess, Alex (, Cell Genomics)
An official website of the United States government
