skip to main content


Search for: All records

Award ID contains: 2128489

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
    more » « less
  2. Free, publicly-accessible full text available September 10, 2024
  3. Support for connected and autonomous vehicles (CAVs) is a major use case of 5G networks. Due to their large from factors, CAVs can be equipped with multiple radio antennas, cameras, LiDAR and other sensors. In other words, they are "giant" mobile integrated communications and sensing devices. The data collected can not only facilitate edge-assisted autonomous driving, but also enable intelligent radio resource allocation by cellular networks. In this paper we conduct an initial study to assess the feasibility of delivering multi-modal sensory data collected by vehicles over emerging commercial 5G networks. We carried out an "in-the-wild" drive test and data collection campaign between Minneapolis and Chicago using a vehicle equipped with a 360° camera, a LiDAR device, multiple smart phones and a professional 5G network measurement tool. Using the collected multi-modal data, we conduct trace-driven experiments in a local streaming testbed to analyze the requirements and performance of streaming multi-modal sensor data over existing 4G/5G networks. We reveal several notable findings and point out future research directions. 
    more » « less
  4. The emerging volumetric videos offer a fully immersive, six degrees of freedom (6DoF) viewing experience, at the cost of extremely high bandwidth demand. In this paper, we design, implement, and evaluate Vues, an edge-assisted transcoding system that delivers high-quality volumetric videos with low bandwidth requirement, low decoding overhead, and high quality of experience (QoE) on mobile devices. Through an IRB-approved user study, we build a f irst-of-its-kind QoE model to quantify the impact of various factors introduced by transcoding volumetric content into 2D videos. Motivated by the key observations from this user study, Vues employs a novel multiview approach with the overarching goal of boosting QoE. The Vues edge server adaptively transcodes a volumetric video frame into multiple 2D views with the help of a few lightweight machine learning models and strategically balances the extra bandwidth consumption of additional views and the improved QoE, indicated by our QoE model. The client selects the view that optimizes the QoE among the delivered candidates for display. Comprehensive evaluations using a prototype implementation indicate that Vues dramatically outperforms existing approaches. On average, it improves the QoE by 35% (up to 85%), compared to single-view transcoding schemes, and reduces the bandwidth consumption by 95%, compared to the state-of-the-art that directly streams volumetric videos. 
    more » « less