Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Recent genomic analyses have revealed that microbial communities are predominantly composed of persistent, sequence-discrete species and intraspecies units (genomovars), but the mechanisms that create and maintain these units remain unclear. By analyzing closely-related isolate genomes from the same or related samples and identifying recent recombination events using a novel bioinformatics methodology, we show that high ecological cohesiveness coupled to frequent-enough and unbiased (i.e., not selection-driven) horizontal gene flow, mediated by homologous recombination, often underlie these diversity patterns. Ecological cohesiveness was inferred based on greater similarity in temporal abundance patterns of genomes of the same vs. different units, and recombination was shown to affect all sizable segments of the genome (i.e., be genome-wide) and have two times or greater impact on sequence evolution than point mutations. These results were observed in bothSalinibacter ruber, an environmental halophilic organism, andEscherichia coli, the model gut-associated organism and an opportunistic pathogen, indicating that they may be more broadly applicable to the microbial world. Therefore, our results represent a departure compared to previous models of microbial speciation that invoke either ecology or recombination, but not necessarily their synergistic effect, and answer an important question for microbiology: what a species and a subspecies are.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Cooper, Vaughn S (Ed.)ABSTRACT Despite the importance of intra-species variants of viruses for causing disease and/or disrupting ecosystem functioning, there is no universally applicable standard to define these. A (natural) gap in whole-genome average nucleotide identity (ANI) values around 95% is commonly used to define species, especially for bacteriophages, but whether a similar gap exists within species that can be used to define intra-species units has not been evaluated yet. Whole-genome comparisons among members of 1,016 bacteriophage (Caudoviricetes) species revealed a region of low frequency of ANI values around 99.2%–99.8%, showing threefold or fewer pairs than expected for an even distribution. This second gap is prevalent in viruses infecting various cultured or uncultured hosts from a variety of environments, although a few exceptions to this pattern were also observed (3.7% of total species) and are likely attributed to cultivation biases or other factors. Similar results were observed for a limited set of eukaryotic viruses that are adequately sampled, including SARS-CoV-2, whose ANI-based clusters matched well with the WHO-defined variants of concern, indicating that our findings from bacteriophages might be more broadly applicable and the ANI-based clusters may represent functionally and/or ecologically distinct units. These units appear to be predominantly driven by (high) ecological cohesiveness coupled to either frequent recombination for bacteriophages or selection and clonal evolution for other viruses such as SARS-CoV-2, indicating that fundamentally different underlying mechanisms could lead to similar diversity patterns. Accordingly, we propose the ANI gap approach outlined above for defining viral intra-species units, for which we propose the term genomovars. IMPORTANCEViral species are composed of an ensemble of intra-species variants whose individual dynamics may have major implications for human and animal health and/or ecosystem functioning. However, the lack of universally accepted standards to define these intra-species variants has led researchers to use different approaches for this task, creating inconsistent intra-species units across different viral families and confusion in communication. By comparing hundreds of mostly bacteriophage genomes, we show that there is a widely distributed natural gap in whole-genome average nucleotide identity values in most, but not all, of these species that can be used to define intra-species units. Therefore, these results advance the molecular toolbox for tracking viral intra-species units and should facilitate future epidemiological and environmental studies.more » « less
- 
            Abstract Genome search and/or classification typically involves finding the best-match database (reference) genomes and has become increasingly challenging due to the growing number of available database genomes and the fact that traditional methods do not scale well with large databases. By combining k-mer hashing-based probabilistic data structures (i.e. ProbMinHash, SuperMinHash, Densified MinHash and SetSketch) to estimate genomic distance, with a graph based nearest neighbor search algorithm (Hierarchical Navigable Small World Graphs, or HNSW), we created a new data structure and developed an associated computer program, GSearch, that is orders of magnitude faster than alternative tools while maintaining high accuracy and low memory usage. For example, GSearch can search 8000 query genomes against all available microbial or viral genomes for their best matches (n = ∼318 000 or ∼3 000 000, respectively) within a few minutes on a personal laptop, using ∼6 GB of memory (2.5 GB via SetSketch). Notably, GSearch has an O(log(N)) time complexity and will scale well with billions of genomes based on a database splitting strategy. Further, GSearch implements a three-step search strategy depending on the degree of novelty of the query genomes to maximize specificity and sensitivity. Therefore, GSearch solves a major bottleneck of microbiome studies that require genome search and/or classification.more » « less
- 
            Jouline, Igor B (Ed.)ABSTRACT Large-scale surveys of prokaryotic communities (metagenomes), as well as isolate genomes, have revealed that their diversity is predominantly organized in sequence-discrete units that may be equated to species. Specifically, genomes of the same species commonly show genome-aggregate average nucleotide identity (ANI) >95% among themselves and ANI <90% to members of other species, while genomes showing ANI 90%–95% are comparatively rare. However, it remains unclear if such “discontinuities” or gaps in ANI values can be observed within species and thus used to advance and standardize intra-species units. By analyzing 18,123 complete isolate genomes from 330 bacterial species with at least 10 genome representatives each and available long-read metagenomes, we show that another discontinuity exists between 99.2% and 99.8% (midpoint 99.5%) ANI in most of these species. The 99.5% ANI threshold is largely consistent with how sequence types have been defined in previous epidemiological studies but provides clusters with ~20% higher accuracy in terms of evolutionary and gene-content relatedness of the grouped genomes, while strains should be consequently defined at higher ANI values (>99.99% proposed). Collectively, our results should facilitate future micro-diversity studies across clinical or environmental settings because they provide a more natural definition of intra-species units of diversity. IMPORTANCEBacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings.more » « less
- 
            Abstract Whether prokaryotes, and other microorganisms, form distinct clusters that can be recognized as species remains an issue of paramount theoretical as well as practical consequence in identifying, regulating, and communicating about these organisms. In the past decade, comparisons of thousands of genomes of isolates and hundreds of metagenomes have shown that prokaryotic diversity may be predominantly organized in such sequence‐discrete clusters, albeit organisms of intermediate relatedness between the identified clusters are also frequently found. Accumulating evidence suggests, however, that the latter “intermediate” organisms show enough ecological and/or functional distinctiveness to be considered different species. Notably, the area of discontinuity between clusters often—but not always—appears to be around 85%–95% genome‐average nucleotide identity, consistently among different taxa. More recent studies have revealed remarkably similar diversity patterns for viruses and microbial eukaryotes as well. This high consistency across taxa implies a specific mechanistic process that underlies the maintenance of the clusters. The underlying mechanism may be a substantial reduction in the efficiency of homologous recombination, which mediates (successful) horizontal gene transfer, around 95% nucleotide identity. Deviations from the 95% threshold (e.g., species showing lower intraspecies diversity) may be caused by ecological differentiation that imposes barriers to otherwise frequent gene transfer. While this hypothesis that clusters are driven by ecological differentiation coupled to recombination frequency (i.e., higher recombination within vs. between groups) is appealing, the supporting evidence remains anecdotal. The data needed to rigorously test the hypothesis toward advancing the species concept are also outlined.more » « less
- 
            Abstract What a strain is and how many strains make up a natural bacterial population remain elusive concepts despite their apparent importance for assessing the role of intra-population diversity in disease emergence or response to environmental perturbations. To advance these concepts, we sequenced 138 randomly selectedSalinibacter ruberisolates from two solar salterns and assessed these genomes against companion short-read metagenomes from the same samples. The distribution of genome-aggregate average nucleotide identity (ANI) values among these isolates revealed a bimodal distribution, with four-fold lower occurrence of values between 99.2% and 99.8% relative to ANI >99.8% or <99.2%, revealing a natural “gap” in the sequence space within species. Accordingly, we used this ANI gap to define genomovars and a higher ANI value of >99.99% and shared gene-content >99.0% to define strains. Using these thresholds and extrapolating from how many metagenomic reads each genomovar uniquely recruited, we estimated that –although our 138 isolates represented about 80% of theSal. ruberpopulation– the total population in one saltern pond is composed of 5,500 to 11,000 genomovars, the great majority of which appear to be rare in-situ. These data also revealed that the most frequently recovered isolate in lab media was often not the most abundant genomovar in-situ, suggesting that cultivation biases are significant, even in cases that cultivation procedures are thought to be robust. The methodology and ANI thresholds outlined here should represent a useful guide for future microdiversity surveys of additional microbial species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available