Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A long‐standing pursuit in materials science is to identify suitable magnetic semiconductors for integrated information storage, processing, and transfer. Van der Waals magnets have brought forth new material candidates for this purpose. Recently, sharp exciton resonances in antiferromagnet NiPS3have been reported to correlate with magnetic order, that is, the exciton photoluminescence intensity diminishes above the Néel temperature. Here, it is found that the polarization of maximal exciton emission rotates locally, revealing three possible spin chain directions. This discovery establishes a new understanding of the antiferromagnet order hidden in previous neutron scattering and optical experiments. Furthermore, defect‐bound states are suggested as an alternative exciton formation mechanism that has yet to be explored in NiPS3. The supporting evidence includes chemical analysis, excitation power, and thickness dependent photoluminescence and first‐principles calculations. This mechanism for exciton formation is also consistent with the presence of strong phonon side bands. This study shows that anisotropic exciton photoluminescence can be used to read out local spin chain directions in antiferromagnets and realize multi‐functional devices via spin‐photon transduction.more » « less
-
Free, publicly-accessible full text available November 12, 2026
-
Semiconductor moiré superlattices, characterized by their periodic spatial light emission, unveil a new paradigm of engineered photonic materials. Here, we show that ferroelectric moiré domains formed in a twisted hexagonal boron nitride (t-hBN) substrate can modulate light emission from an adjacent semiconductor MoSe2monolayer. The electrostatic potential at the surface of the t-hBN substrate provides a simple way to confine excitons in the MoSe2monolayer. The excitons confined within the domains and at the domain walls are spectrally separated because of a pronounced Stark shift. Moreover, the patterned light emission can be dynamically controlled by electrically gating the ferroelectric domains, introducing a functionality beyond other semiconductor moiré superlattices. Our findings chart an exciting pathway for integrating nanometer-scale moiré ferroelectric domains with various optically active functional layers, paving the way for advanced nanophotonics and metasurfaces.more » « lessFree, publicly-accessible full text available May 9, 2026
-
Moiré superlattices host a rich variety of correlated electronic phases. However, the moiré potential is fixed by interlayer coupling, and it is dependent on the nature of carriers and valleys. In contrast, it has been predicted that twisted hexagonal boron nitride (hBN) layers can impose a periodic electrostatic potential capable of engineering the properties of adjacent functional layers. Here, we show that this potential is described by a theory of electric polarization originating from the interfacial charge redistribution, validated by its dependence on supercell sizes and distance from the twisted interfaces. This enables controllability of the potential depth and profile by controlling the twist angles between the two interfaces. Employing this approach, we further demonstrate how the electrostatic potential from a twisted hBN substrate impedes exciton diffusion in semiconductor monolayers, suggesting opportunities for engineering the properties of adjacent functional layers using the surface potential of a twisted hBN substrate.more » « less
-
Abstract The performance of electronic and optoelectronic devices is dominated by charge carrier injection through the metal–semiconductor contacts. Therefore, creating low-resistance electrical contacts is one of the most critical challenges in the development of devices based on new materials, particularly in the case of two-dimensional semiconductors. Herein, we report a strategy to reduce the contact resistance of MoS 2 via local pressurization. We fabricated electrical contacts using an atomic force microscopy tip and applied variable pressure ranging from 0 to 25 GPa. By measuring the transverse electronic transport properties, we show that MoS 2 undergoes a reversible semiconducting-metallic transition under pressure. Planar devices in field effect configuration with electrical contacts performed at pressures above ∼15 GPa show up to 30-fold reduced contact resistance and up to 25-fold improved field-effect mobility when compared to those measured at low pressure. Theoretical simulations show that this enhanced performance is due to improved charge injection to the MoS 2 semiconductor channel through the metallic MoS 2 phase obtained by pressurization. Our results suggest a novel strategy for realizing improved contacts to MoS 2 devices by local pressurization and for exploring emergent phenomena under mechano-electric modulation.more » « less
An official website of the United States government
