skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2130727

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a scalable tensor-based approach to computing controllability and observability-type energy functions for nonlinear dynamical systems with polynomial drift and linear input and output maps. Using Kronecker product polynomial expansions, we convert the Hamilton- Jacobi-Bellman partial differential equations for the energy functions into a series of algebraic equations for the coefficients of the energy functions. We derive the specific tensor structure that arises from the Kronecker product representation and analyze the computational complexity to efficiently solve these equations. The convergence and scalability of the proposed energy function computation approach is demonstrated on a nonlinear reaction-diffusion model with cubic drift nonlinearity, for which we compute degree 3 energy function approximations in n = 1023 dimensions and degree 4 energy function approximations in n = 127 dimensions. 
    more » « less