- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Han, Zhaoyang (3)
-
Handagala, Suranga (3)
-
Leeser, Miriam (3)
-
Zink, Michael (3)
-
Bal, Sandeep (1)
-
Cevik, Mert (1)
-
Diaconu, Dana (1)
-
Patle, Kalyani (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Bal, Sandeep; Han, Zhaoyang; Handagala, Suranga; Cevik, Mert; Zink, Michael; Leeser, Miriam (, IEEE)In recent years, Field Programmable Gate Arrays (FPGAs) have gained prominence in cloud computing data centers, driven by their capacity to offload compute-intensive tasks and contribute to the ongoing trend of data center disaggregation, as well as their ability to be directly connected to the network. While FPGAs offer numerous advantages, they also pose challenges in terms of configuration, programmability, and monitoring, particularly in the absence of an operating system with essential features like the TCP/IP networking stack. This paper introduces an In-band Network Telemetry (INT) approach based on the P4 language for FPGA data plane programming. The goal is to facilitate monitoring and network performance analysis by providing one-way packet delay information. The approach is demonstrated in the Open Cloud Testbed (OCT) and FABRIC testbeds, both offering open access to the research community with greater FPGA availability than commercial clouds. The workflow enables researchers to create custom P4 programs and bitstreams for installation on FPGAs. The paper presents a multi-step approach allowing experimentation within the New England Research Cloud (NERC), testing in OCT, and final deployment in FABRIC, well-suited for one-way delay measurements due to synchronized clocks via GPS time signals. Contributions include the provision of a P4 workflow for FPGAs in a research cloud, a novel FPGA clock-based INT approach, and a comprehensive evaluation through simulation and experiments in the Open Cloud and FABRIC testbeds.more » « lessFree, publicly-accessible full text available May 20, 2025
-
Han, Zhaoyang; Handagala, Suranga; Patle, Kalyani; Zink, Michael; Leeser, Miriam (, The 10th International Workshop on Computer and Networking Experimental Research using Testbeds (CNERT))This paper presents a framework for cloud users who wish to specify their experiments in the P4 language and map them to FPGAs in the Open Cloud Testbed (OCT). OCT consists of P4-enabled FPGA nodes that are directly connected to the network via 100 gigabit Ethernet connections, and which support runtime reconfiguration. Cloud users can quickly prototype and deploy their P4 applications through our framework, which provides the necessary infrastructure including a network interface shell for the P4 logic. We have provided several examples using this framework that demonstrate designs running at the 100 GbE line rate with the support of runtime reconfiguration for P4 functions. By combining an existing network interface shell and P4 toolchain on FPGAs, we offer a framework that enables users to rapidly execute their P4 experiments in real time on FPGAs.more » « less