Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We explore the characteristics of EMIC waves generated in a non‐dipole, compressed magnetic field at the minimum of the magnetic field. We conducted 2D full‐wave simulations using the Petra‐M code, focusing on a compressed magnetic field in the outer dayside magnetosphere for a range ofLvalues . By comparing the simulation results with MMS observations, we aim to understand how the observed wave characteristics are affected by a shifting source region across different L‐shells. Our findings indicate that the direction of the Poynting vector systematically changes depending on the local source location of the wave, which is consistent with the observations. EMIC waves propagate along the magnetic field line and reach both the northern and southern hemispheres; however, there is a notable difference in the power of EMIC waves between the two hemispheres, indicating seasonal asymmetries in their occurrence.more » « less
-
Abstract Analysis of the ordinary mode (O‐mode) instability is performed to comprehend the nonthermal continuum (NTC) radiation near the plasmapause, taking into account the relativistic wave‐electron resonance effect. The energy source is the anisotropy in the velocity of the minority suprathermal electron population. Numerical solutions demonstrate that the O‐mode can be unstable with multiple narrow frequency bands located close to harmonics of the electron cyclotron frequency above the local electron plasma frequency. These waves have narrow beaming angle bands of nearly relative to the ambient magnetic field. Our findings indicate that NTC radiation generated by this wave‐electron resonance instability near the plasmapause can propagate nearer to the magnetic equator with multiple harmonics, which is in agreement with a recent statistical study using Van Allen Probes.more » « less
-
Abstract To understand the entry of the cool low‐latitude mantle ions into the tail plasma sheet near the flanks under persistent interplanetary magnetic field By, we evaluate the role of the cross‐field diffusive transport by kinetic Alfvén waves (KAWs) by investigating two events observed by multiscale (MMS) spacecraft. Around the separatrix between the open and closed field‐line regions, a two‐component mixing of hot plasma sheet ions of a few keV with cool mantle ions of a few hundred eV was observed, indicating transport across the separatrix. The waves observed between 0.01 and 10 Hz around the separatrix had characteristics consistent with those of KAWs. The consistency allowed us to estimate the wave vectors as a function of frequency by fitting KAW dispersion to the observations. Using the observed wave powers, plasma moments, and the estimated wave vectors, we computed the cross‐field diffusion rates associated with KAWs. The diffusion rates were found to be comparable to or larger than the Bohm diffusion rates during the intervals when the two‐component mixing was observed, indicating that the KAW diffusive transport can play a role in the entry of low‐latitude mantle ions into the plasma sheet.more » « less
-
We present applications of the full-wave solver, Petra-M code for Earth magnetospheric plasma wave physics by leveraging the current effort of the radio frequency wave project. Because the Petra-M code uses the modular finite element method (MFEM) library, the boundary shapes, plasma density profiles, and realistic planetary magnetic fields can be easily adapted. In order to incorporate realistic Earth’s magnetic field into the Petra-M, we utilize the self-consistent magnetospheric flux models for compressed and stretched magnetic fields and realistic magnetospheric magnetic field geometries extracted from global MHD simulations. Using Petra-M code, we then examine ultra-low frequency (ULF) wave propagations in various magnetic field shapes. For example, left-handed polarized electromagnetic ion cyclotron waves in Earth’s dipole and compressed magnetic field are examined to consider waves in the inner and dayside outer magnetospheres, respectively. Mode-converted Alfvén wave propagation is also demonstrated in the compressed (dayside), stretched(nightside), and realistically stretched magnetic field (magnetotail). Therefore, the Petra-M code successfully demonstrates magnetospheric plasma wave propagation despite the spatial scale differences between the fusion devices (~m) and Earth’s magnetosphere (103 − 104km).more » « less
An official website of the United States government
