skip to main content


Search for: All records

Award ID contains: 2131070

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Power system transmission network topology is utilized in energy management system applications. Substation configurations are fundamental to transmission network topology processing. Modern power systems consisting of renewable energy sources require reliable and fast network topology processing due to the variable nature of wind and solar power plants. Currently used transmission network topology processing, which is based on the relay signals communicated through SCADA is not highly reliable or highly accurate. Substation configuration identification (SCI) for different substation arrangements including main and transfer bus arrangement (MTBA), ring bus arrangement (RBA), and single bus arrangement (SBA) is investigated. Synchrophasor measurement based SCI for functional arrangements (FA) using artificial intelligence (AI) approaches is proposed in this paper. This method improves monitoring FA. Typical results for MTBA, RBA and SBA substation configuration identification is presented. A modified two-area four-machine power system model with two grid connected solar PV plants consisting of MTBA, RBA and SBA is simulated on real-time digital simulator. AI based SCI is shown to accurately identify all possible FAs for the three substation arrangements under any operating condition. 
    more » « less
  2. Voltage control in modern electric power distribution systems has become challenging due to the increasing penetration of distributed energy resources (DER). The current state-of-the-art voltage control is based on static/pre-determined DER volt-var curves. Static volt-var curves do not provide sufficient flexibility to address the temporal and spatial aspects of the voltage control problem in a power system with a large number of DER. This paper presents a simple, scalable, and robust distributed optimization framework (DOF) for optimizing voltage control. The proposed framework allows for data-driven distributed voltage optimization in a power distribution system. This method enhances voltage control by optimizing volt-var curve parameters of inverters in a distributed manner based on a cellular computational network (CCN) representation of the power distribution system. The cellular optimization approach enables the system-wide optimization. The cells to be optimized may be prioritized and two methods namely, graph and impact-based methods, are studied. The impact-based method requires extra initial computational efforts but thereafter provides better computational throughput than the graph-based method. The DOF is illustrated on a modified standard distribution test case with several DERs. The results from the test case demonstrate that the DOF based volt-var optimization results in consistently better performance than the state-of-the-art volt-var control. 
    more » « less