skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2131486

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Experimental results are presented that provide insight into the physics of statistical imaging in heavily scattering random media based on measured speckle correlations as a function of the change in position of a moving object. In this way, definitive interpretation of a rather complex and earlier theory is achieved, making this work an experimental complement to that theory paper []. Motion could be natural, where the set of positions is estimated or separately obtained, or directed, where a mechanical stage can be used to adjust the object's position. In the experiment, a coherent laser illuminates two scattering diffusers, while an object is translated between them in the resulting speckled field and images are collected in a transmission configuration. Results are shown for various objects of differing size and geometry, allowing the theory to be validated and interpreted with new understanding. This work demonstrates imaging opportunities, and applications include material characterization, environmental imaging and sensing, and deep-tissue imaging. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Imaging and sensing of moving objects through opaque scattering media is a challenging but important problem in a variety of applications, including environmental sensing, biomedical imaging, and material inspection. We have previously demonstrated a technique to coherently image a moving object through thick, heavily scattering random media using correlations of speckle images as a function of the object’s spatial translation. Here, we demonstrate that this technique can be combined with localization to achieve imaging without prior knowledge of the object’s motion, greatly extending the application domain. This method is effective beyond the thin or weakly scattering regime and, rather than motion being deleterious, exploits the information available when the hidden object is moving, as could be the case in a cluttered terrestrial environment or through substantial levels of biological tissue scatter. 
    more » « less
  3. Super-resolution optical sensing is of critical importance in science and technology and has required prior information about an imaging system or obtrusive near-field probing. Additionally, coherent imaging and sensing in heavily scattering media such as biological tissue has been challenging, and practical approaches have either been restricted to measuring the field transmission of a single point source, or to where the medium is thin. We present the concept of far-subwavelength spatial sensing with relative object motion in speckle as a means to coherently sense through heavy scatter. Experimental results demonstrate the ability to distinguish nominally identical objects with nanometer-scale translation while hidden in randomly scattering media, without the need for precise or known location and with imprecise replacement. The theory and supportive illustrations presented provide the basis for super-resolution sensing and the possibility of virtually unlimited spatial resolution, including through thick, heavily scattering media with relative motion of an object in a structured field. This work provides enabling opportunities for material inspection, security, and biological sensing. 
    more » « less