Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Patterning of quantum dots (QDs) is essential for many, especially high‐tech, applications. Here, pH tunable assembly of QDs over functional patterns prepared by electrohydrodynamic jet printing of poly(2‐vinylpyridine) is presented. The selective adsorption of QDs from water dispersions is mediated by the electrostatic interaction between the ligand composed of 3‐mercaptopropionic acid and patterned poly(2‐vinylpyridine). The pH of the dispersion provides tunability at two levels. First, the adsorption density of QDs and fluorescence from the patterns can be modulated for pH > ≈4. Second, patterned features show unique type of disintegration resulting in randomly positioned features within areas defined by the printing for pH ≤ ≈4. The first capability is useful for deterministic patterning of QDs, whereas the second one enables hierarchically structured encoding of information by generating stochastic features of QDs within areas defined by the printing. This second capability is exploited for generating addressable security labels based on unclonable features. Through image analysis and feature matching algorithms, it is demonstrated that such patterns are unclonable in nature and provide a suitable platform for anti‐counterfeiting applications. Collectively, the presented approach not only enables effective patterning of QDs, but also establishes key guidelines for addressable assembly of colloidal nanomaterials.more » « less
-
Abstract Advanced anti‐counterfeiting and authentication approaches are in urgent need of the rapidly digitizing society. Physically unclonable functions (PUFs) attract significant attention as a new‐generation security primitive. The challenge is design and generation of multi‐color PUFs that can be universally applicable to objects of varied composition, geometry, and rigidity. Herein, tattoo‐like multi‐color fluorescent PUFs are proposed and demonstrated. Multi‐channel optical responses are created by electrospraying of polymers that contain semiconductor nanocrystals with precisely defined photoluminescence. The universality of this approach enables the use of dot and dot‐in‐rod geometries with unique optical characteristics. The fabricated multi‐color PUFs are then transferred to a target object by using a temporary tattoo approach. Digitized keys generated from the red, green and blue fluorescence channels facilitate large encoding capacity and rapid authentication. Feature matching algorithms complement the authentication by direct image comparison, effectively alleviating constraints associated with imaging conditions. The strategy that paves the way for the development of practical, cost‐effective, and secure anticounterfeiting systems is presented.more » « less
-
Double heterojunction nanorods enable both electroluminescence and light harvesting capabilities within the same device structure, providing a promising platform for energy-scavenging displays and related applications. However, the efficiency of the photovoltaic mode remains modest for useful power conversion and may be challenging to improve without sacrificing performance in electroluminescence. Through a facile on-film partial ligand exchange with benzenethiol integrated into the device fabrication step, we achieve an average of more than threefold increase in power conversion efficiency while maintaining the maximum external quantum efficiency and the maximum luminance in the LED mode. The improved photovoltaic performance is mainly due to the increase in the short circuit current, which we attribute to the enhanced charge separation afforded by the partial ligand exchange. The recovery of the photoluminescence lifetime under the forward bias suggests that the hole traps introduced by benzenethiols are filled prior to reaching the voltage at which light emission begins, allowing LED performance to be maintained and possibly improved.more » « less
An official website of the United States government
