Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Ground-based instruments offer unique capabilities such as detailed atmospheric, thermodynamic, cloud, and aerosol profiling at a high temporal sampling rate. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) user facility provides comprehensive datasets from key locations around the globe, facilitating long-term characterization and process-level understanding of clouds, aerosol, and aerosol–cloud interactions. However, as with other ground-based datasets, the fixed (Eulerian) nature of these measurements often introduces a knowledge gap in relating those observations with air-mass hysteresis. Here, we describe ARMTRAJ (https://doi.org/10.5439/2309851, Silber, 2024a; https://doi.org/10.5439/2309849, Silber, 2024b; https://doi.org/10.5439/2309850, Silber, 2024c; https://doi.org/10.5439/2309848, Silber, 2024d), a set of multipurpose trajectory datasets that helps close this gap in ARM deployments. Each dataset targets a different aspect of atmospheric research, including the analysis of surface, planetary boundary layer, distinct liquid-bearing cloud layers, and (primary) cloud decks. Trajectories are calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model informed by the European Centre for Medium-Range Weather Forecasts ERA5 reanalysis dataset at its highest spatial resolution (0.25°) and are initialized using ARM datasets. The trajectory datasets include information about air-mass coordinates and state variables extracted from ERA5 before and after the ARM site overpass. Ensemble runs generated for each model initialization enhance trajectory consistency, while ensemble variability serves as a valuable uncertainty metric for those reported air-mass coordinates and state variables. Following the description of dataset processing and structure, we demonstrate applications of ARMTRAJ to a case study and a few bulk analyses of observations collected during ARM's Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) field deployment. ARMTRAJ will soon become a near real-time product accompanying new ARM deployments and an augmenting product to ongoing and previous deployments, promoting reaching science goals of research relying on ARM observations.more » « lessFree, publicly-accessible full text available January 1, 2026
-
This dataset includes aerosol microphysics and chemical measurements collected at Mt. Soledad and Scripps Pier during the Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) from February 2023 to February 2024. The measurements include the following instruments at Mt. Soledad: High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne), Scanning Electrical Mobility Spectrometer (SEMS, Brechtel Manufacturing Inc.), Aerodynamic Particle Sizer (APS, Droplet Measurements Technologies), Single Particle Soot Photometer (SP2, Drople Measurements Technologies), Meteorological Station (WXT520, Vaisala), Ozone (Teco), and trace gas proxies (Teledyne). In addition, the analyses of particle filters collected at Mt. Soledad for three dry-diameter size cuts (<1 micron, <0.5 micron, <0.18 micron) and at Scripps Pier for one dry-diametr size cut (<1 micron) by Fourier Transform Infrared (FTIR) and X-ray Fluorescence (XRF) are reported. A differential mobility analyzer operated as a scanning mobility particle sizer (SMPS, TSI Inc.), a printed particle optical spectrometer (POPS, Grimm), and a continuous flow diffusion cloud condensation nuclei (CCN, DMT) counter provide the mobility aerosol size distribution (30-360 nm), optical size distribution (150 - 6000 nm), size-resolved CCN distribution (30-360 nm) at 0.2, 0.4, 0.6, 0.8, and 1.0% supersaturation. Measurements are reported for both sampling from an isokinetic aerosol inlet and from a Counterflow Virtual Impactor (CVI, Brechtel Manufacturing Inc.). Users of these measurements are encouraged to consult with the authors about appropriate interpretation before submitting for publication, offering coauthorship where appropriate.more » « less
An official website of the United States government
