skip to main content


Search for: All records

Award ID contains: 2133806

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Training a neural network requires choosing a suitable learning rate, which involves a trade-off between speed and effectiveness of convergence. While there has been considerable theoretical and empirical analysis of how large the learning rate can be, most prior work focuses only on late-stage training. In this work, we introduce the maximal initial learning rate - the largest learning rate at which a randomly initialized neural network can successfully begin training and achieve (at least) a given threshold accuracy. Using a simple approach to estimate the maximal initial learning rate, we observe that in constant-width fully-connected ReLU networks, the maximal initial learning rate behaves differently from the maximum learning rate later in training. Specifically, we find that the maximal initial learning rate is well predicted as a power of depth times width, provided that (i) the width of the network is sufficiently large compared to the depth, and (ii) the input layer is trained at a relatively small learning rate. We further analyze the relationship between the maximal initial learning rate and the sharpness of the network at initialization, indicating they are closely though not inversely related. We formally prove bounds for the maximal initial learning rate in terms of depth times width that align with our empirical results. 
    more » « less