Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Biorefineries can reduce carbon dioxide emissions while serving the global chemical demand market. Governments are also using carbon pricing policies, such as carbon taxes, cap-and-trade models, and carbon caps, as a strategy to reduce emissions. The use of biomass feedstocks in conjunction with carbon capture usage and storage technologies are mitigation strategies for global warming. Businesses can invest in these technologies to accommodate the adoption of these policies. Rapid action is necessary to halt global warming, which results in aggressive policies. In this work, a multi-period process design and planning problem is developed for the design and capacity expansion of biorefineries. The three carbon pricing policies are integrated into the model and parameters are selected according to the aggressive scenario denoted by the Paris Agreement. The results show that the cap-and-trade policy achieves a higher net present value evaluation over the carbon tax model across all pareto points due to the flexibility of the allowances in the cap-and-trade policy. The carbon cap model substantial investments are required in carbon capture technologies to adhere to the emissions constraints.more » « less
-
Chemical recycling of plastics is a promising technology to reduce carbon footprint and ease the pressure of waste treatment. Specifically, highly efficient conversion technologies for polyolefins will be the most effective solution to address the plastic waste crisis, given that polyolefins are the primary contributors to global plastic production. Significant challenges encountered by plastic waste valorization facilities include the uncertainty in the composition of the waste feedstock, process yield, and product price. These variabilities can lead to compromised performance or even render operations infeasible. To address these challenges, this work applied the robust optimization-based framework to design an integrated polyolefin chemical recycling plant. Data-driven surrogate model was built to capture the separation units behavior and reduce the computational complexity of the optimization problem. It was found that when process yield and price uncertainties were considered, wax products became more favorable, and pyrolysis became the preferred reaction technology.more » « less
-
We report that boron -containing zeolite chabazite (B-CHA) catalyzes the oxidative dehydrogenation of ethane (ODHE) with high selectivity (>70 %) and excellent stability in the temperature range of 500-600 degrees C. ODHE rates, in fact, increase over time on stream. Ethane consumption rate has an apparent activation energy of 126 kJ mol(-1), with Langmuirian dependence on the oxygen partial pressure and first-order dependence on the ethane partial pressure. Investigation of the catalyst before and after reaction by one-dimensional B-11 magic angle spinning (1D B-11 MAS) nuclear magnetic resonance (NMR), two-dimensional B-11 multiple quantum MAS (2D B-11 MQMAS) NMR spectroscopy, and Fourier transform infrared (FTIR) spectroscopy identifies the B-OH group in defect trigonal boron (B(OSi)(OH)(2)) as the species initiating the ODHE reaction. This result could open a pathway to develop suitable catalysts for industrial ethylene production with lower greenhouse gas emissions than current non -oxidative dehydrogenation routes.more » « less
An official website of the United States government
