skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2135305

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In genetic mapping studies involving many individuals, genome-wide markers such as single nucleotide polymorphisms (SNPs) can be detected using different methods. However, it comes with some errors. Some SNPs associated with diseases can be in regions encoding long noncoding RNAs (lncRNAs). Therefore, identifying the errors in genotype file and correcting them is crucial for accurate genetic mapping studies. We develop a Python tool called PySmooth, that offers an easy-to-use command line interface for the removal and correction of genotyping errors. PySmooth uses the approach of a previous tool called SMOOTH with some modifications. It inputs a genotype file, detects errors and corrects them. PySmooth provides additional features such as imputing missing data, better user-friendly usage, generates summary and visualization files, has flexible parameters, and handles more genotype codes. 
    more » « less
  2. This study employs supervised machine learning algorithms to test whether locomotive features during exploratory activity in open field arenas can serve as predictors for the genotype of fruit flies. Because of the nonlinearity in locomotive trajectories, traditional statistical methods that are used to compare exploratory activity between genotypes of fruit flies may not reveal all insights. 10-minute-long trajectories of four different genotypes of fruit flies in an open-field arena environment were captured. Turn angles and step size features extracted from the trajectories were used for training supervised learning models to predict the genotype of the fruit flies. Using the first five minute locomotive trajectories, an accuracy of 83% was achieved in differentiating wild-type flies from three other mutant genotypes. Using the final 5 min and the entire ten minute duration decreased the performance indicating that the most variations between the genotypes in their exploratory activity are exhibited in the first few minutes. Feature importance analysis revealed that turn angle is a better predictor than step size in predicting fruit fly genotype. Overall, this study demonstrates that features of trajectories can be used to predict the genotype of fruit flies through supervised machine learning methods. 
    more » « less